Table of Contents

  • Preface
  • 1 Introduction
    • 1.1 Sensor Networks
    • 1.2 Inertial Navigation
    • 1.3 Situational Awareness
    • 1.4 Statistical Approaches
    • 1.5 Software Support
    • 1.6 Outline of the Book

Part I Fusion in the Static Case

  • 2 Linear Models
    • 2.1 Introduction
    • 2.2 Least Squares Approaches
    • 2.3 Fusion
    • 2.4 The Maximum Likelihood Approach
    • 2.5 Cramér-Rao Lower Bound
    • 2.6 Summary
  • 3 Nonlinear models
    • 3.1 Introduction
    • 3.2 Nonlinear Least Squares
    • 3.3 Linearizing the Measurement Equation
    • 3.4 Inversion of the Measurement Equation
    • 3.5 A General Approximation Strategy
    • 3.6 Conditionally Linear Models
    • 3.7 Implicit Measurement Equation
    • 3.8 Summary
  • 4 Sensor Networks
    • 4.1 Typical Observation Models
    • 4.2 Target Localization
    • 4.3 NLS and SLS Solutions
    • 4.4 Dedicated Least Squares Solutions
    • 4.5 Extended Estimation Problems
    • 4.6 Summary
  • 5 Detection and Classification Problems
    • 5.1 Detection
    • 5.2 Classification
    • 5.3 Association
    • 5.4 Summary

Part II Fusion in the Dynamic Case

  • 6 Filter Theory
    • 6.1 Introduction
    • 6.2 The Fusion-Diffusion Approach to Filtering
    • 6.3 The Classical Approach to Nonlinear Filtering
    • 6.4 Grid Based Methods
    • 6.5 Nonlinear Filtering Bounds
    • 6.6 Summary
  • 7 The Kalman Filter
    • 7.1 Kalman Filter Algorithms
    • 7.2 Practical Issues
    • 7.3 Computational Aspects
    • 7.4 Smoothing
    • 7.5 Square Root Implementation
    • 7.6 Filter Monitoring
    • 7.7 Examples
    • 7.8 Summary
  • 8. The Extended and Unscented Kalman Filters
    • 8.1 DARE-based Extended Kalman Filter
    • 8.2 Riccati-Free EKF and UKF
    • 8.3 Target Tracking Examples
    • 8.4 Summary
  • 9 The Particle Filter
    • 9.1 Introduction
    • 9.2 Recapitulation of Nonlinear Filtering
    • 9.3 The Particle Filter
    • 9.4 Tuning
    • 9.5 Choice of Proposal Distribution
    • 9.6 Theoretical Performance
    • 9.7 Complexity Bottlenecks
    • 9.8 Marginalized Particle Filter Theory
    • 9.9 Particle Filter Code Examples
    • 9.10 Summary
  • 10 Kalman Filter Banks
    • 10.1 General Solution
    • 10.2 On-Line Algorithms
    • 10.3 Off-Line Algorithms
    • 10.4 Summary
  • 11 Simultaneous Localization and Mapping
    • 11.1 Introduction
    • 11.2 Kalman Filter Approach
    • 11.3 The FastSLAM Algorithm
    • 11.4 Marginalized FastSLAM
    • 11.5 Summary

Part III Practice

  • 12 Modeling
    • 12.1 Discretizing Linear Models
    • 12.2 Discretizing Nonlinear Models
    • 12.3 Discretizing State Noise
    • 12.4 Linearization Error and Choice of State Coordinates
    • 12.5 Sensor Noise Modeling
    • 12.6 Choice of Sampling Interval
    • 12.7 Calibration of Dynamical Systems
    • 12.8 Summary
  • 13 Motion Models
    • 13.1 Translational Kinematics
    • 13.2 Rotational Kinematics
    • 13.3 Rigid-Body Kinematics
    • 13.4 Constrained Kinematic Models
    • 13.5 Odometric Models
    • 13.6 Vehicle Models
    • 13.7 Aircraft Dynamics
    • 13.8 Underwater Vehicle Dynamics
    • 13.9 Summary
  • 14 Sensors and Sensor Near Processing
    • 14.1 Ranging Sensors
    • 14.2 Physical Sensors
    • 14.3 Wheel Speed Sensors
    • 14.4 Wireless Network Measurements
    • 14.5 Summary
  • 15 Filter and Model Validation
    • 15.1 Parametric Uncertainty
    • 15.2 Ground Truth Data
    • 15.3 Sensor Calibration Issues
    • 15.4 Summary
  • 16 Applications
    • 16.1 Sensor Networks
    • 16.2 Kalman Filtering
    • 16.3 Particle Filter Positioning Applications

Appendices

  • A Statistics Theory
    • A.1 Selected Distributions
    • A.2 Conjugate Priors
    • A.3 Nonlinear Transformations
  • B Sampling Theory
    • B.1 Generating Samples from Uniform Distribution
    • B.2 Accept-Reject Sampling
    • B.3 Bootstrap
    • B.4 Resampling
    • B.5 Stochastic Integration by Importance Sampling
    • B.6 Markov Chain Monte Carlo
    • B.7 Gibbs Sampling
  • C Estimation Theory
    • C.1 Basic Concepts
    • C.2 Cramér-Rao Lower Bound
    • C.3 Sufficient Statistics
    • C.4 Rao-Blackman-Lehmann-Scheffe's Theorem
    • C.5 Maximum Likelihood Estimation
    • C.6 The Method of Moments
    • C.7 Bayesian Methods
    • C.8 Recursive Bayesian Estimation
  • D Detection Theory
    • D.1 Notation
    • D.2 The Likelihood Ratio Test
    • D.3 Detection of Known Mean in Gaussian Noise
    • D.4 Eliminating Unknown Parameters
    • D.5 Nuisance Parameters
    • D.6 Bayesian Extensions
    • D.7 Linear Model
  • E Least Squares Theory
    • E.1 Derivation of Least Squares Algorithms
    • E.2 Matrix Notation and QR Factorizations
    • E.3 Comparing On-Line and Off-Line Expressions
    • E.4 Asymptotic Expressions
    • E.5 Derivation of Marginal Densities
  • Index