Table of Contents
- 1. Introduction
- 1.1. Examples of Central Problems
- 1.2. Signal Representation
- 1.3. Basic Tools
- 1.4. Outline of the Book
- 1.5. Summary
- 1.6. Bibliography
- 2. Frequency Models
- 2.1. Introduction
- 2.2. Frequency Models for Continuous-Time Signals
- 2.3. Discrete Time Fourier Transform
- 2.4. Information Loss due to Sampling
- 2.5. Information Loss due to Truncation
- 2.6. The Discrete Fourier Transform
- 2.7. DFT Applications
- 2.8. Practical Aspects
- 2.9. Summary
- 2.10. Bibliography
- 2.A. Distributions and Fourier Transforms
- 3. Stochastic Signals and Spectral Models
- 3.1. Introduction
- 3.2. Stochastic Processes
- 3.3. Spectrum
- 3.4. Estimation of Covariance Functions
- 3.5. Estimation of Spectra
- 3.6. Summary
- 3.7. Bibliography
- 4. Filtering
- 4.1. Introduction
- 4.2. Linear Filters
- 4.3. The Signal and Noise Problem
- 4.4. Specifications on Frequency Selective Filters
- 4.5. Construction of Digital Filters
- 4.6. Choice of Filter
- 4.7. Implementation of Filters
- 4.8. Summary
- 4.9. Bibliography
- 5. Signal Models
- 5.1. Introduction
- 5.2. Signal Models as Filtered White Noise
- 5.3. Signal Models with Several Signals
- 5.4. AR and ARMA Models
- 5.5. State Space Models
- 5.6. Prediction
- 5.7. Summary
- 5.8. Bibliography
- 6. Model Estimation
- 6.1. Introduction
- 6.2. Estimation of Linear Models
- 6.3. Estimation of AR Models
- 6.4. Estimation of Nonlinear Models
- 6.5. Estimation of ARMA Models
- 6.6. Practical Aspects
- 6.7. Summary
- 6.8. Bibliography
- 7. Wiener Filtering
- 7.1. Introduction
- 7.2. Wiener’s Problem Formulation
- 7.3. The Wiener–Hopf Equations
- 7.4. The FIR Wiener Filter
- 7.5. The Non-Causal Wiener Filter
- 7.6. Tracking using the Wiener Filter
- 7.7. The Causal Wiener Filter
- 7.8. Wiener Filter Residual Variance
- 7.9. Wiener Filter for Models with One Noise Source
- 7.10. Summary
- 7.11. Bibliography
- 8. Kalman Filtering
- 8.1. Introduction
- 8.2. The Kalman Filter
- 8.3. Stationary Kalman Filter
- 8.4. Relations Between the Kalman and Wiener Filters
- 8.5. Smoothing and Prediction
- 8.6. Square Root Implementation
- 8.7. Summary
- 8.8. Bibliography
- 9. Adaptive Filtering
- 9.1. Introduction
- 9.2. Signal Models
- 9.3. Adaptive Algorithms
- 9.4. Change Detection
- 9.5. A Simulation Example
- 9.6. Noise Cancelation
- 9.7. Summary
- 9.8. Bibliography
- 9.A. Performance Analysis
- Bibliograph