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Bayes versus Fisher

Thomas Bayes 1701-1761 Ronald Aylmer Fisher 1890-1962
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Purpose

Explain the di�erence of Bayes and Fisher statistics

There are two schools in statistics: The Bayesian and the frequentist/Fisherian view

For practitioners, the di�erence is only philosophical, not big di�erence

They are complementary tools: Fisherian methods work well in estimation, Bayesian
methods more �exible in �ltering.

There are a few tricks to easily related them to eachother.
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Bayes versus Fisher

Partly philosophical, belief in prior
knowledge p(x)

Focus on posterior
p(x |y) = p(y |x)p(x)/p(y)
MAP (maximum a posteriori) estimate
x̂MAP = argmaxx p(x |y)
The posteriori distribution gives
complete information about the
estimation uncertainty, from which e.g.,
the covariance can be computed.

Only look at data y for inference about
x , everything else is prejudice and gives
bias

Focus on likelihood p(y |x)
ML estimate x̂ML = argmaxx p(y |x)
FIM (Fisher Information Matrix) I(x) is
de�ned in terms of likelihood and can be
used to approximate Cov(x̂ML), having
the CRLB constraint
Cov(x̂ML) ≥ I−1(x0).
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MAP versus ML

Consider a simple example (special case of a linear state space model):

x = v , Cov(v) = Q,

y = x + e, Cov(e) = R.

The ML estimate is trivial

x̂ML = argmax
x

p(y |x) = y ,

Cov

(
x̂ML
k

)
= R.

Note that the Fisher approach ignores any possible prior that may exists for x .
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MAP versus ML

For the MAP estimate, we use the Gaussian distribution and completion of the squares to
get

x̂MAP = argmax
x

p(y |x)p(x) = argmin
x
−2 log

(
p(y |x)

)
− 2 log

(
p(x)

)
= argmin

x

(y − x)2

R
+

x2

Q
= argmin

x

Qx2 − 2Qyx + Qy2 + Rx2

QR

= · · · = argmin
x

Q + R

QR

(
x − Qy

Q + R

)2

+
y2

Q + R

=
Q

Q + R
y

Since Cov(y) = R , the covariance is given by

Cov

(
x̂MAP
k

)
=

Q2

(Q + R)2
R < R
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Some Re�ections and Generalizations

The MAP estimate has always smaller covariance than the ML estimate, since the prior
adds information.

Note that Cov
(
x̂MAP
k

)
→ Cov

(
x̂ML
k

)
as Q →∞. That is, MAP will give the same

result as ML for a non-informative prior.

The MAP estimate can actually be computed using the sensor fusion formula, where
y1 = 0 = x − v and y2 = x + e are used. Here, y1 is seen as a virtual measurement of
x .
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Example

Consider the simple scalar example repeated in
two independent dimensions

De�ne a rather uninformative prior (Q large) for x

Let the measurement noise be much smaller
(R = 0.03)

Apply the fusion formula to get the MAP
estimate and its covariance

Illustrate with con�dence ellipsoids� �
x=ndist ([0;0] , eye (2))

y=ndist ([0.5;0.5] ,0.03* eye(2))

xhat=fusion(x,y)

plot2(x,y,xhat)

axis('equal')� �
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Summary

MAP versus ML

ML is a special case of MAP when using a non-informative prior.
The prior can be seen as a virtual measurement.
The MAP estimate can be computed with the sensor fusion formula for the real and
virtual measurement.

This is an introduction to Part II
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