

Kalman Filter Sensor Fusion

Fredrik Gustafsson fredrik.gustafsson@liu.se Gustaf Hendeby gustaf.hendeby@liu.se

(D) (B) (E) (E) E

Linköping University

Linear Models and Bayesian Filter Recursion

Time-varying linear state-space model

$$egin{aligned} & x_{k+1} = F_k x_k + G_k v_k, & & \operatorname{Cov}(v_k) = Q_k \ & y_k = H_k x_k + e_k, & & \operatorname{Cov}(e_k) = R_k, \end{aligned}$$

assuming $E(v_k) = 0$, $E(e_k) = 0$, and mutual independence.

Bayesian filter recursion

$$p(x_{k+1}|y_{1:k}) = \int_{x_k} p(x_{k+1}|x_k) p(x_k|y_{1:k}) dx_k$$
(TU)
$$p(x_k|y_{1:k}) = \frac{p(y_k|x_k) p(x_k|y_{1:k-1})}{p(y_k|y_{1:k-1})}$$
(MU)

Time Update

Assume $E(x_k|y_{1:k}) = \hat{x}_{k|k}$ and $Cov(x_k|y_{1:k}) = P_{k|k}$, and compute the predictive mean and covariance:

$$\begin{aligned} \hat{x}_{k+1|k} &= \mathsf{E}(F_k x_k + G_k v_k | y_{1:k}) \\ &= F_k \hat{x}_{k|k} + G_k 0 \\ &= F_k \hat{x}_{k|k} \\ P_{k+1|k} &= \operatorname{Cov}(F_k x_k + G_k v_k | y_{1:k}) \\ &= \operatorname{Cov}(F_k x_k | y_{1:k}) + \operatorname{Cov}(G_{k-1} v_{k-1} | y_{1:k}) \\ &= F_k P_{k|k} F_k^T + G_k Q_k G_k^T \end{aligned}$$

Conditional Gaussian Distribution

Lemma 7.1

If X and Y are two jointly distributed Gaussian stochastic variables according to

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} P_{XX} & P_{XY} \\ P_{YX} & P_{YY} \end{pmatrix}\right),$$

then the conditional distribution of X, given the observed value of Y = y, is Gaussian distributed according to

$$(X|Y=y) \sim \mathcal{N}(\mu_X + P_{XY}P_{YY}^{-1}(y-\mu_Y), P_{XX} - P_{XY}P_{YY}^{-1}P_{YX}).$$

Assume $E(x_k|y_{1:k-1}) = \hat{x}_{k|k-1}$ and $Cov(x_k|y_{1:k-1}) = P_{k|k-1}$, and compute the mean and covariance conditioned on the new measurement y_k . First note.

$$\begin{pmatrix} x_k \\ y_k \end{pmatrix} = \begin{pmatrix} x_k \\ H_k x_k + e_k \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \hat{x}_{k|k-1} \\ H \hat{x}_{k|k-1} \end{pmatrix}, \begin{pmatrix} P_{k|k-1} & P_{k|k-1} H_k^T \\ H_k P_{k|k-1} & H_k P_{k|k-1} H_k + R_k \end{pmatrix} \right).$$

Next, apply Lemma 7.1, which yields

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + P_{k|k-1}H^{T}(HP_{k|k-1}H^{T} + R_{k})^{-1}(y_{k} - H\hat{x}_{k|k-1})$$
$$P_{k|k} = P_{k|k-1} - P_{k|k-1}H^{T}(HP_{k|k-1}H^{T} + R_{k})^{-1}HP_{k|k-1}$$

◆□ > ◆□ > ◆豆 > ◆豆 > → □ = → ○ < ⊙ < ⊙

The Kalman filter measurement update:

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + P_{k|k-1}H^{\mathsf{T}}(HP_{k|k-1}H^{\mathsf{T}} + R_k)^{-1}(y_k - H\hat{x}_{k|k-1})$$
$$P_{k|k} = P_{k|k-1} - P_{k|k-1}H^{\mathsf{T}}(HP_{k|k-1}H^{\mathsf{T}} + R_k)^{-1}HP_{k|k-1}$$

To simplify, introduce variables to highlight the structure

€ 990

イロト イヨト イヨト イヨト

The Kalman filter measurement update:

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + P_{k|k-1}H^{T}(HP_{k|k-1}H^{T} + R_{k})^{-1}(y_{k} - \hat{y}_{k}) P_{k|k} = P_{k|k-1} - P_{k|k-1}H^{T}(HP_{k|k-1}H^{T} + R_{k})^{-1}HP_{k|k-1}$$

To simplify, introduce variables to highlight the structure

$$\hat{y}_k = H_k \hat{x}_{k|k-1}$$
 Predicted measurement.

The Kalman filter measurement update:

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + P_{k|k-1}H^{T}(HP_{k|k-1}H^{T} + R_{k})^{-1}\varepsilon_{k}$$
$$P_{k|k} = P_{k|k-1} - P_{k|k-1}H^{T}(HP_{k|k-1}H^{T} + R_{k})^{-1}HP_{k|k-1}$$

To simplify, introduce variables to highlight the structure

 $\begin{aligned} \hat{y}_k &= H_k \hat{x}_{k|k-1} & \text{Predicted measurement.} \\ \varepsilon_k &= y_k - \hat{y}_k & \text{The innovation.} \end{aligned}$

€ 9Q@

Image: A match a ma

The Kalman filter measurement update:

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + P_{k|k-1} H^{T} \frac{S_{k}}{S_{k}}^{-1} \varepsilon_{k}$$
$$P_{k|k} = P_{k|k-1} - P_{k|k-1} H^{T} \frac{S_{k}}{S_{k}}^{-1} H P_{k|k-1}$$

To simplify, introduce variables to highlight the structure

$$\begin{aligned} \hat{y}_k &= H_k \hat{x}_{k|k-1} & \mathsf{F} \\ \varepsilon_k &= y_k - \hat{y}_k & \mathsf{T} \\ S_k &= H P_{k|k-1} H^T + R_k & \mathsf{T} \end{aligned}$$

Predicted measurement.

The innovation.

The covariance of the innovation.

= nar

The Kalman filter measurement update:

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + \frac{\kappa_k}{\kappa_k} \\ P_{k|k} = P_{k|k-1} - \frac{\kappa_k}{\kappa_k} HP_{k|k-1}$$

To simplify, introduce variables to highlight the structure

$$\begin{aligned} \hat{y}_k &= H_k \hat{x}_{k|k-1} & \text{Pri} \\ \varepsilon_k &= y_k - \hat{y}_k & \text{Tr} \\ S_k &= HP_{k|k-1}H^T + R_k & \text{Tr} \\ K_k &= P_{k|k-1}H_k^T S_k^{-1} & \text{Tr} \end{aligned}$$

Predicted measurement.

The innovation.

The covariance of the innovation.

The Kalman gain.

= 900

The Kalman filter measurement update:

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k \varepsilon_k$$
$$P_{k|k} = P_{k|k-1} - K_k H P_{k|k-1}$$

To simplify, introduce variables to highlight the structure

$$\hat{y}_{k} = H_{k}\hat{x}_{k|k-1}$$

$$\varepsilon_{k} = y_{k} - \hat{y}_{k}$$

$$S_{k} = HP_{k|k-1}H^{T} + R_{k}$$

$$K_{k} = P_{k|k-1}H_{k}^{T}S_{k}^{-1}$$

Predicted measurement.

The innovation.

The covariance of the innovation.

The Kalman gain.

= 900

Image: A match a ma

Overview

The Kalman filter:

- the measurements only affect \hat{x} not P, which can be precomputed;
- is a *best linear unbiased estimator* (BLUE);
- is the exact solution to the Bayesian recursion for linear Gaussian models;
- can equivalently be formulated on information form propagating $\iota = P^{-1}\hat{x}$ and $\mathcal{I} = P^{-1}$; and
- has been extended to handle nonlinear problems, e.g., extended Kalman filter (EKF), unscented Kalman filter (UKF).

イロト イロト イヨト イヨト ヨー シック

Kalman Filter Tuning

- The **SNR ratio** ||*Q*||/||*R*|| is the most crucial, it sets the filter speeds. Note the difference between real system and model used in the KF.
- Recommendation: fix R according to sensor specification or measured performance, and tune Q.
 (Motion models are anyway subjective approximations of reality).
- **Tune covariances in large steps** (order of magnitudes)!
- High SNR in the model, gives a fast filter that is quick to adapt to changes/maneuvers, but with larger uncertainty (small bias, large variance).
- Low SNR in the model, gives a slow filter that is slow to adapt to changes/maneuvers, but with small uncertainty (large bias, small variance).
- P₀ reflects the belief in the prior x₀ ~ N(x̂₀, P₀). Possible to choose P₀ very large (and x̂₀ arbitrary), if no prior information exists.

Simulation Example (1/2)

Create a constant velocity model, simulate and Kalman filter.

Simulation Example (2/2)

Covariance illustrated as confidence ellipsoids in 2D plots or confidence bands in 1D plots.

Summary

The Kalman filter is the exact solution to the Bayesian filtering recursion for linear Gaussian model

$$egin{aligned} & x_k = F_k x_k + G_k v_k, & v_k & \mathcal{N}(0, Q_k) \ & y_k = H_k x_k + e_k, & e_k & \mathcal{N}(0, R_k. \end{aligned}$$

Kalman Filter Algorithm

Time update:	$\hat{x}_{k+1 k} = F_k \hat{x}_{k k}$
	$P_{k+1 k} = F_k P_{k k} F_k^T + G_k Q_k G_k^T$
Meas. update:	$\hat{x}_{k k} = \hat{x}_{k k-1} + \mathcal{K}_k(y_k - \hat{y}_k)$
	$P_{k k} = P_{k k-1} - \mathcal{K}_k P_{k k-1}$
	$\hat{y}_k = H_k \hat{x}_{k k-1}$
	$\mathcal{K}_k = \mathcal{P}_{k k-1} \mathcal{H}_k^{ op} (\mathcal{H} \mathcal{P}_{k k-1} \mathcal{H}^{ op} + \mathcal{R}_k)^{-1}$

Section 7-7.1. Section 7.1.3 (Lemma 7.1), treated separately.

・ロト ・ 四 ・ ミ = ・ ・ 回 ・ ・ 日 ・ うへで