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Linear Models and Bayesian Filter Recursion

Time-varying linear state-space model

xk+1 = Fkxk + Gkvk , Cov(vk) = Qk

yk = Hkxk + ek , Cov(ek) = Rk ,

assuming E(vk) = 0, E(ek) = 0, and mutual independence.

Bayesian �lter recursion

p(xk+1|y1:k) =
∫
xk

p(xk+1|xk)p(xk |y1:k) dxk (TU)

p(xk |y1:k) =
p(yk |xk)p(xk |y1:k−1)

p(yk |y1:k−1)
(MU)
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Time Update

Assume E(xk |y1:k) = x̂k|k and Cov(xk |y1:k) = Pk|k , and compute the
predictive mean and covariance:

x̂k+1|k = E(Fkxk + Gkvk |y1:k)
= Fk x̂k|k + Gk0

= Fk x̂k|k

Pk+1|k = Cov(Fkxk + Gkvk |y1:k)
= Cov(Fkxk |y1:k) + Cov(Gk−1vk−1|y1:k)
= FkPk|kF

T
k + GkQkG

T
k
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Conditional Gaussian Distribution

Lemma 7.1

If X and Y are two jointly distributed Gaussian stochastic variables
according to (

X
Y

)
∼ N

((
µX
µY

)
,

(
PXX PXY

PYX PYY

))
,

then the conditional distribution of X , given the observed value of
Y = y , is Gaussian distributed according to

(X |Y = y) ∼ N (µX + PXYP
−1
YY (y − µY ),PXX − PXYP

−1
YYPYX ).
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Measurement Update (1/2)

Assume E(xk |y1:k−1) = x̂k|k−1 and Cov(xk |y1:k−1) = Pk|k−1, and
compute the mean and covariance conditioned on the new measurement
yk .
First note,(
xk
yk

)
=

(
xk

Hkxk + ek

)
∼ N

((
x̂k|k−1
Hx̂k|k−1

)
,

(
Pk|k−1 Pk|k−1H

T
k

HkPk|k−1 HkPk|k−1Hk + Rk

))
.

Next, apply Lemma 7.1, which yields

x̂k|k = x̂k|k−1 + Pk|k−1H
T (HPk|k−1H

T + Rk)
−1(yk − Hx̂k|k−1)

Pk|k = Pk|k−1 − Pk|k−1H
T (HPk|k−1H

T + Rk)
−1HPk|k−1
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Measurement Update (2/2)

The Kalman �lter measurement update:

x̂k|k = x̂k|k−1 + Pk|k−1H
T (HPk|k−1H

T + Rk)
−1(yk − Hx̂k|k−1)

Pk|k = Pk|k−1 − Pk|k−1H
T (HPk|k−1H

T + Rk)
−1HPk|k−1

To simplify, introduce variables to highlight the structure

ŷk = Hk x̂k|k−1 Predicted measurement.

εk = yk − ŷk The innovation.

Sk = HPk|k−1H
T + Rk The covariance of the innovation.

Kk = Pk|k−1H
T
k S−1k The Kalman gain.
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εk = yk − ŷk The innovation.

Sk = HPk|k−1H
T + Rk The covariance of the innovation.

Kk = Pk|k−1H
T
k S−1k The Kalman gain.

Gustafsson and Hendeby Kalman Filter 6 / 11



Measurement Update (2/2)

The Kalman �lter measurement update:

x̂k|k = x̂k|k−1 + Kkεk

Pk|k = Pk|k−1 − KkHPk|k−1

To simplify, introduce variables to highlight the structure

ŷk = Hk x̂k|k−1 Predicted measurement.
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Overview

The Kalman �lter:

the measurements only a�ect x̂ not P , which can be precomputed;

is a best linear unbiased estimator (BLUE);

is the exact solution to the Bayesian recursion for linear Gaussian
models;

can equivalently be formulated on information form propagating
ι = P−1x̂ and I = P−1; and

has been extended to handle nonlinear problems, e.g., extened
Kalman �lter (EKF), unscented Kalman �lter (UKF).
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Kalman Filter Tuning

The SNR ratio ‖Q‖/‖R‖ is the most crucial, it sets the �lter speeds.
Note the di�erence between real system and model used in the KF.

Recommendation: �x R according to sensor speci�cation or measured
performance, and tune Q.
(Motion models are anyway subjective approximations of reality).

Tune covariances in large steps (order of magnitudes)!

High SNR in the model, gives a fast �lter that is quick to adapt to
changes/maneuvers, but with larger uncertainty (small bias, large variance).

Low SNR in the model, gives a slow �lter that is slow to adapt to
changes/maneuvers, but with small uncertainty (large bias, small variance).

P0 re�ects the belief in the prior x0 ∼ N (x̂0,P0). Possible to choose P0

very large (and x̂0 arbitrary), if no prior information exists.
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Simulation Example (1/2)

Create a constant velocity model, simulate and Kalman �lter.

� �
T = 0.5;
F = [1 0 T 0; 0 1 0 T; 0 0 1 0; 0 0 0 1];
G = [T^2/2 0; 0 T^2/2; T 0; 0 T];
H = [1 0 0 0; 0 1 0 0];
R = 0.03* eye(2);
m = lss(F, [], H,[], G*G', R, 1/T);
m.xlabel = {'X', 'Y', 'vX', 'vY'};
m.ylabel = {'X', 'Y'};
m.name = 'Constant velocity motion model ';
z = simulate(m, 20);
xhat1 = kalman(m, z, 'alg', 2, 'k', 0); % Time -varying

xplot2(z, xhat1 , 'conf', 90, [1 2]);� �
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Simulation Example (2/2)

Covariance illustrated as con�dence ellipsoids in 2D plots or con�dence bands in 1D plots.

� �
xplot(z, xhat1 , 'conf', 99)� �
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Summary
The Kalman �lter is the exact solution to the Bayesian �ltering recursion
for linear Gaussian model

xk = Fkxk + Gkvk , vk ∼ N (0,Qk)

yk = Hkxk + ek , ek ∼ N0,Rk .

Kalman Filter Algorithm

Time update: x̂k+1|k = Fk x̂k|k

Pk+1|k = FkPk|kF
T
k + GkQkG

T
k

Meas. update: x̂k|k = x̂k|k−1 + Kk(yk − ŷk)

Pk|k = Pk|k−1 − KkPk|k−1

ŷk = Hk x̂k|k−1

Kk = Pk|k−1H
T
k (HPk|k−1H

T + Rk)
−1

Section 7�7.1. Section 7.1.3 (Lemma 7.1), treated separately.
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