

Conditional Gaussian Distribution (Lemma 7.1) Sensor Fusion

Fredrik Gustafsson
fredrik.gustafsson@liu.se

Gustaf Hendeby
gustaf.hendeby@liu.se

Linköping University

Conditional Gaussian Distribution

Lemma 7.1

If X and Y are two jointly distributed Gaussian stochastic variables according to

$$
\binom{X}{Y} \sim \mathcal{N}\left(\binom{\mu_{X}}{\mu_{Y}},\left(\begin{array}{ll}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)\right),
$$

then the conditional distribution of X, given the observed value of $Y=y$, is Gaussian distributed according to

$$
(X \mid Y=y) \sim \mathcal{N}\left(\mu_{X}+P_{X Y} P_{Y Y}^{-1}\left(y-\mu_{Y}\right), P_{X X}-P_{X Y} P_{Y Y}^{-1} P_{Y X}\right) .
$$

Illustrating Example

- Measurements: $y=3 x+e$
where $e \sim \mathcal{N}(0, R), R=\frac{1}{2^{2}}$
- Actual x is $x^{0}=1$
- Prior: $x \sim \mathcal{N}\left(\hat{x}_{0}, P_{0}\right), \hat{x}_{0}=1.1$, $P_{0}=1$

Illustrating Example

- Measurements: $y=3 x+e$ where $e \sim \mathcal{N}(0, R), R=\frac{1}{2^{2}}$
- Actual x is $x^{0}=1$
- Prior: $x \sim \mathcal{N}\left(\hat{x}_{0}, P_{0}\right), \hat{x}_{0}=1.1$, $P_{0}=1$
- Joint distribution

$$
\binom{x}{y} \sim \mathcal{N}\left(\binom{\hat{x}_{0}}{3 \hat{x}_{0}},\left(\begin{array}{cc}
P_{0} & 3 P_{0} \\
3 P_{0} & 9 P_{0}+R
\end{array}\right)\right)
$$

Illustrating Example

- Measurements: $y=3 x+e$ where $e \sim \mathcal{N}(0, R), R=\frac{1}{2^{2}}$
- Actual x is $x^{0}=1$
- Prior: $x \sim \mathcal{N}\left(\hat{x}_{0}, P_{0}\right), \hat{x}_{0}=1.1$, $P_{0}=1$
- Joint distribution $\binom{x}{y} \sim \mathcal{N}\left(\binom{\hat{x}_{0}}{3 \hat{x}_{0}},\left(\begin{array}{cc}P_{0} & 3 P_{0} \\ 3 P_{0} & 9 P_{0}+R\end{array}\right)\right)$
- Obtained measurement:

$$
y=2.99
$$

Illustrating Example

- Measurements: $y=3 x+e$ where e $\sim \mathcal{N}(0, R), R=\frac{1}{2^{2}}$
- Actual x is $x^{0}=1$
- Prior: $x \sim \mathcal{N}\left(\hat{x}_{0}, P_{0}\right), \hat{x}_{0}=1.1$, $P_{0}=1$
- Joint distribution $\binom{x}{y} \sim \mathcal{N}\left(\binom{\hat{x}_{0}}{3 \hat{x}_{0}},\left(\begin{array}{cc}P_{0} & 3 P_{0} \\ 3 P_{0} & 9 P_{0}+R\end{array}\right)\right)$
- Obtained measurement:

$$
y=2.99
$$

- Conditional distribution

$$
(x \mid y) \sim \mathcal{N}\left(\hat{x}_{0}+\frac{3 P_{0}}{9 P_{\mathbf{0}}+R}\left(y-3 \hat{x}_{0}\right), \frac{R}{9 P_{0}+R}\right)
$$

Proof of Lemma
 $(1 / 4)$

For simplicity, let $\tilde{x}=x-\mu_{x}$ and $\tilde{y}=y-\mu_{y}$. Now, compute the conditional distribution

$$
\begin{aligned}
& p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}=\mathcal{N}\left(\binom{\tilde{x}}{\tilde{y}} ;\binom{x}{y},\left(\begin{array}{ll}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)\right) / \mathcal{N}\left(y ; \tilde{y}, P_{Y Y}\right) \\
&\left.=\frac{\exp \left((\begin{array} { c }
{ \tilde { x } } \\
{ \tilde { y } }
\end{array}) ^ { T } \left(\begin{array}{c}
P_{X X} \\
P_{Y X}
\end{array} P_{Y Y}\right.\right.}{P_{Y Y}}\right)^{-1}\binom{\tilde{x}}{\tilde{y}} \\
&\left.\left.\sqrt{\operatorname{det}\left(2 \pi \left(\begin{array}{c}
P_{X X} \\
P_{Y X}
\end{array} P_{Y Y}\right.\right.}\right)\right)
\end{aligned} \frac{\exp \left(\tilde{y}^{T} P_{Y Y}^{-1} \tilde{y}\right)}{\sqrt{\operatorname{det}\left(2 \pi P_{Y Y}\right)}} .
$$

Proof of Lemma
 $(2 / 4)$

Block LDL decomposition of the joint covariance matrix yields

$$
\left(\begin{array}{cc}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)=\left(\begin{array}{cc}
I & P_{X Y} P_{Y Y}^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
P_{X X}-P_{X Y} P_{Y Y}^{-1} P_{Y X} & 0 \\
0 & P_{Y Y}
\end{array}\right)\left(\begin{array}{cc}
I & P_{X Y} P_{Y Y}^{-1} \\
0 & I
\end{array}\right)^{T} .
$$

Proof of Lemma
 $(2 / 4)$

Block LDL decomposition of the joint covariance matrix yields

$$
\left(\begin{array}{cc}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)=\left(\begin{array}{cc}
1 & P_{X Y} P_{Y Y}^{-1} \\
0 & l
\end{array}\right)\left(\begin{array}{cc}
P & 0 \\
0 & P_{Y Y}
\end{array}\right)\left(\begin{array}{cc}
1 & P_{X Y} P_{Y Y}^{-1} \\
0 & 1
\end{array}\right)^{T} .
$$

For notational convenience, let
$P=P_{X X}-P_{X Y} P_{Y Y}^{-1} P_{Y X}$

Proof of Lemma
 $(2 / 4)$

Block LDL decomposition of the joint covariance matrix yields

$$
\left(\begin{array}{ll}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)=\left(\begin{array}{cc}
1 & K \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
P & 0 \\
0 & P_{Y Y}
\end{array}\right)\left(\begin{array}{cc}
1 & K \\
0 & 1
\end{array}\right)^{T}
$$

For notational convenience，let $P=P_{X X}-P_{X Y} P_{Y Y}^{-1} P_{Y X} \quad$ and $\quad K=P_{X Y} P_{Y Y}^{-1}$.

Proof of Lemma
 $(2 / 4)$

Block LDL decomposition of the joint covariance matrix yields

$$
\left(\begin{array}{ll}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)=\left(\begin{array}{cc}
1 & K \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
P & 0 \\
0 & P_{Y Y}
\end{array}\right)\left(\begin{array}{cc}
1 & K \\
0 & l
\end{array}\right)^{T}
$$

For notational convenience, let $P=P_{X X}-P_{X Y} P_{Y Y}^{-1} P_{Y X} \quad$ and $\quad K=P_{X Y} P_{Y Y}^{-1}$.

Now the product rule can be used to compute the determinant for the denominator:

$$
\begin{aligned}
\operatorname{det}\left(\left(\begin{array}{cc}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)\right) & =\operatorname{det}\left(\left(\begin{array}{cc}
1 & K \\
0 & I
\end{array}\right)\right) \operatorname{det}\left(\left(\begin{array}{cc}
P & 0 \\
0 & P_{Y Y}
\end{array}\right)\right) \operatorname{det}\left(\left(\begin{array}{ll}
l & K \\
0 & I
\end{array}\right)^{T}\right) \\
& =1 \cdot \operatorname{det}(P) \operatorname{det}\left(P_{Y Y}\right) \cdot 1
\end{aligned}
$$

Proof of Lemma
 $(3 / 4)$

$\left(C_{a / c_{l / a} t_{e}}\right.$
I-

\qquad
-
\qquad
\qquad
\qquad
\qquad

Proof of Lemma
 $(3 / 4)$
 （3／4）

Proof of Lemma
 $(3 / 4)$

Calculate the inverse of the joint covariance matrix,

$$
\left(\begin{array}{cc}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & -K \\
0 & I
\end{array}\right)^{T}\left(\begin{array}{cc}
P^{-1} & 0 \\
0 & P_{Y Y}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & -K \\
0 & I
\end{array}\right) .
$$

The exponent cam now be expressed as

$$
\binom{\tilde{x}}{\tilde{y}}^{T}\left(\begin{array}{ll}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)^{-1}\binom{\tilde{x}}{\tilde{y}}=\binom{\tilde{x}}{\tilde{y}}^{T}\left(\begin{array}{cc}
I & -K \\
0 & I
\end{array}\right)^{T}\left(\begin{array}{cc}
P^{-1} & 0 \\
0 & P_{Y Y}^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & -K \\
0 & I
\end{array}\right)\binom{\tilde{x}}{\tilde{y}}
$$

Proof of Lemma
 $(3 / 4)$

Calculate the inverse of the joint covariance matrix,

$$
\left(\begin{array}{cc}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & -K \\
0 & I
\end{array}\right)^{T}\left(\begin{array}{cc}
P^{-1} & 0 \\
0 & P_{Y Y}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & -K \\
0 & I
\end{array}\right) .
$$

The exponent cam now be expressed as

$$
\binom{\tilde{x}}{\tilde{y}}^{T}\left(\begin{array}{ll}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)^{-1}\binom{\tilde{x}}{\tilde{y}}=\binom{\tilde{x}-K \tilde{y}}{\tilde{y}}^{T}\left(\begin{array}{cc}
P^{-1} & 0 \\
0 & P_{Y Y}^{-1}
\end{array}\right)\binom{\tilde{x}-K \tilde{y}}{\tilde{y}}
$$

Proof of Lemma
 $(3 / 4)$

Calculate the inverse of the joint covariance matrix,

$$
\left(\begin{array}{cc}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
I & -K \\
0 & I
\end{array}\right)^{T}\left(\begin{array}{cc}
P^{-1} & 0 \\
0 & P_{Y Y}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & -K \\
0 & I
\end{array}\right)
$$

The exponent cam now be expressed as

$$
\binom{\tilde{x}}{\tilde{y}}^{T}\left(\begin{array}{ll}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)^{-1}\binom{\tilde{x}}{\tilde{y}}=\binom{\bar{x}}{\tilde{y}}^{T}\left(\begin{array}{cc}
P^{-1} & 0 \\
0 & P_{Y Y}^{-1}
\end{array}\right)\binom{\bar{x}}{\tilde{y}}
$$

And define $\bar{x}=\tilde{x}-K \tilde{y}$ and substitute in.

Proof of Lemma
 $(3 / 4)$

Calculate the inverse of the joint covariance matrix,

$$
\left(\begin{array}{cc}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
I & -K \\
0 & I
\end{array}\right)^{T}\left(\begin{array}{cc}
P^{-1} & 0 \\
0 & P_{Y Y}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & -K \\
0 & I
\end{array}\right)
$$

The exponent cam now be expressed as

$$
\binom{\tilde{x}}{\tilde{y}}^{T}\left(\begin{array}{ll}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)^{-1}\binom{\tilde{x}}{\tilde{y}}=\binom{\bar{x}}{\tilde{y}}^{T}\left(\begin{array}{cc}
P^{-1} & 0 \\
0 & P_{Y Y}^{-1}
\end{array}\right)\binom{\bar{x}}{\tilde{y}}
$$

And define $\bar{x}=\tilde{x}-K \tilde{y}$ and substitute in.

Proof of Lemma
 （4／4）

Now the conditional distribution can be calculated

$$
\left.p_{X \mid Y}(x \mid y)=\frac{\exp \left((\begin{array} { c }
{ \tilde { \tilde { y } } }
\end{array}) ^ { T } \left(\begin{array}{l}
P_{X X} \\
P_{Y X}
\end{array} P_{Y Y}\right.\right.}{P_{Y Y}}\right)^{-1}\binom{\tilde{\tilde{y}}}{)}, \frac{\exp \left(\tilde{y}^{T} P_{Y Y}^{-1} \tilde{y}\right)}{\left.\left.\sqrt{\operatorname{det}\left(2 \pi \left(\begin{array}{c}
P_{X X} \\
P_{Y X}
\end{array} P_{Y Y}\right.\right.}\right)\right)}
$$

－
\qquad

-

2
（2）Chen
(2)
4ロ〉4占
\qquad
\qquad

.

Proof of Lemma
 $(4 / 4)$
)

Now the conditional distribution can be calculated

$$
p_{X \mid Y}(x \mid y)=\frac{\exp \left(\left(\begin{array}{c}
\overline{\tilde{y}}
\end{array}\right)^{\top}\left(\begin{array}{cc}
P_{-1}^{-1} & P_{-1}^{0-1} \\
0 & P_{Y}
\end{array}\right)\left(\begin{array}{l}
\overline{\tilde{y}}
\end{array}\right)\right.}{\sqrt{\operatorname{det}(2 \pi P) \operatorname{det}\left(2 \pi P_{Y Y}\right)}} / \frac{\exp \left(\tilde{y}^{T} P_{Y Y}^{-1} \tilde{y}\right)}{\sqrt{\operatorname{det}\left(2 \pi P_{Y Y}\right)}}
$$

now the conditional distribution can be calculated

Abstract

$+$
. \qquad
\qquad

Now the conditional distribution can be calculated

$$
p_{X \mid Y}(x \mid y)=\frac{\exp \left(\bar{x}^{\top} P^{-1} \bar{x}+\tilde{y}^{\top} P_{Y Y}^{-1} \tilde{y}\right)}{\sqrt{\operatorname{det}(2 \pi P) \operatorname{det}\left(2 \pi P_{Y Y}\right)}} / \frac{\exp \left(\tilde{y}^{\top} P_{Y Y}^{-1} \tilde{y}\right)}{\sqrt{\operatorname{det}\left(2 \pi P_{Y Y}\right)}}
$$

\qquad

Proof of Lemma
 $(4 / 4)$
 ）

Now the conditional distribution can be calculated

\author{

}

P

相 \qquad

[^0]


```
*
```

```
*
```

```
*
```

```
*
```

```
*
```

```
*
```

```
*
```

```
*
```

```
*
```

```
*
```

```
*
```


Abstract

\qquad

Ω

Now the conditional distribution can be calculated

$$
p_{X \mid Y}(x \mid y)=\frac{\exp \left(\bar{x}^{T} P^{-1} \bar{x}\right)}{\sqrt{\operatorname{det}(2 \pi P)}}
$$

Finally, expanding \bar{x} yields,

$$
\begin{aligned}
& \quad \bar{x}=\tilde{x}-K \tilde{y}=x-\mu_{X}-K\left(y-\mu_{Y}\right)=x-\left(\mu_{X}+K\left(y-\mu_{Y}\right)\right) \\
& \quad K=P_{X Y} P_{Y Y}^{-1} \\
& P=P_{X X}-P_{X Y} P_{Y Y}^{-1} P_{Y X}
\end{aligned}
$$

which shows that $p_{X \mid Y}(x \mid y)$ is a Gaussian distribution such that:

$$
(X \mid Y=y) \sim \mathcal{N}\left(\mu_{X}+P_{X Y} P_{Y Y}^{-1}\left(y-\mu_{Y}\right), P_{X X}-P_{X Y} P_{Y Y}^{-1} P_{Y X}\right)
$$

Summary

Lemma 7.1

If X and Y are two jointly distributed Gaussian stochastic variables according to

$$
\binom{X}{Y} \sim \mathcal{N}\left(\binom{\mu_{X}}{\mu_{Y}},\left(\begin{array}{ll}
P_{X X} & P_{X Y} \\
P_{Y X} & P_{Y Y}
\end{array}\right)\right),
$$

then the conditional distribution of X, given the observed value of $Y=y$, is Gaussian distributed according to

$$
(X \mid Y=y) \sim \mathcal{N}\left(\mu_{X}+P_{X Y} P_{Y Y}^{-1}\left(y-\mu_{Y}\right), P_{X X}-P_{X Y} P_{Y Y}^{-1} P_{Y X}\right) .
$$

Section 7.1.3

[^0]:
 #### Abstract

 －

