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Purpose

To make physical models derived in continuous time useful in filtering and sensor fusion
applications.

m Given a continuous time physical model x(t) = Ax(t) + Bu(t)
m How to get a discrete time model xxy1 = Fxx + Gui”?

m General methodology for discretizing (sampling) linear and nonlinear continuous time
models.

m Examples from sensor fusion practice to illustrate.
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Solving an ODE
What is the solution to the ODE x = Ax + Bu?
Same methodology as in scalar case in calculus.

1. Multiply with integrating factor e * on both sides
2. Note that

a (At At (o)
= (77x(0)) = e (x(2) — Ax(1))
3. Then, the solution by integrating both sides of

/t
0 ds
4. The solution is

(e*Asx(s)) = /Ot e %u(s)ds

t
x(t) = etx(0) + / e A=) y(s)ds
0
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5. We get F = e and, if u is piece-wise constant, G = fOT e’ dr B.
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Example 1: Newton'’s Il law (revisited)
Linear motion governed by Newtons Il law, F = ma = mX
Using x = (p,v)7

(- e v

m) u= Ax+ Bu
Solving the ODE over one sampling interval T gives

F

=1+ AT + JA’T? +

T (D) e
[ea)-L0:

G

m

0 T2\ 1
o 1) er(3)- (7 )
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Inter-sample behaviour

How to treat the input u (control signal or process noise) in a linear continuous time model
when discretizing

x = Ax + Bu, Xk+1 = Fxi + Guyg
y = Cx + e, Vi = Hxx + Juy + ek

m F = e?7 is the unique solution to the ODE.
m But G depends on the assumption or knowledge of the inter-sample behaviour. Most
important assumptions:
e Piece-wise constant input: ZOH, zero order hold.
e Piece-wise linear input: FOH, first order hold.
e Band-limited according the the Nyquist criterium: BIL, the bilinear transformation.

m Use c2d in Matlab for converting a linear continuous time model to a linear discrete
time model.

m It also holds that H = C, the measurement relation does not change with
discretization, but note the input leakage term Juy that may appear.
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Different Sampled Models of Double Integrator

State:

x = Ax + Bu Xk+1 = Fxx + Guy
y = Cx+ Du Y = Hxyx + Juy

)

Continuous
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Translational Motion with n Integrators

Translational kinematics models in nD, where p(t) denotes:
m Position: X(t), (X(2), Y(£)) . or (X(2), Y(2),Z(t))"
m Rotation: 9(t) or (¢(t),8(t), (1))

The signal w(t) is process noise for a pure kinematic model and a motion input signal in

position, velocity, and acceleration, respectively, for the case of using sensed motion as an
input rather than as a measurement.

State, x Continuous time, x Discrete time, x(t + T)
P w x+ Tw

p 0n In 0n ln Tl Zy,
(V) (On On)x+ (ln v On In X+ 2rln v
3
On I On 0, o Th T Tl
0n On o |x+ [ 0n |w O I Th |x+ | 2, |w
On 0, O In On On In

Tl,
II."H“K,%;@% Gustafsson and Hendeby

L < T

Models 7/11



Nonlinear models

Classification Nonlinear Linear
Continuous time x=a(x,u)+v x=Ax+ Bu+v
= c(x,u) + y=Cx+Du+e
Discrete time xk+1 = f(x, u)+ v xgp1=Fx+ Gu+v
= h(x,u) + y =Hx+Ju+e

m Nonlinear filters require a discrete time model.

m The Kalman filter requires a linear discrete time model.

m There are two paths from a nonlinear continuous time model to a linear discrete time
model:

e Discretized linearization: Llnearize first, then apply the explicit discretization formulas.
e Linearized discretization: Try to discretize first, and then linearize.
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Exact Discretization of Coordinated Turn Models

m Coordinated turn models popular in target
tracking applications.

m Good compromize between model flexibility and
simplicity.

m Possibility of exact sampling one reason for its
success.

m Exact sampling even possible for two different
choices of state vectors:

e Polar velocity with speed v and heading h as
states.
o Cartesian velocity with vX, vY as states.
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Coordinated Turns in 2D World Coordinates

Cartesian velocity

Polar velocity

X=v X = vcos(h)

Y=v" Y = vsin(h)

V= —wvY v=20

vV =wvX h=w

w=0 w=0
0 0 1 0 0 0 cos(h) —vsin(h) 0
0 0 0 1 0 0 0 sin(h) wvcos(h) O

A=[0 0 0 -w —v" A=1|0 0 0 0 0
0 0 w O vX 0 0 0 0 1
0 0 0 O 0 0 0 0 0 0

Xerr= X+ % sin(wT) — %(1 —cos(wT)) Xepr =X + 2 sin(4) cos(h+ 4T)
Yeuar=Y + %(1 —cos(wT)) + % sin(wT) Yerr=Y — Zsin(4h)sin(h+ 4F)

vir=vXcos(wT) — v sin(wT)

Vit T =V
v = vSsin(wT) 4+ v cos(wT) heyr=h+wT
Wi T = W W4T = W
[m] [l =
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Summary

m Discetized linearization: Linearize

Classification Nonlinear Linear
Continuous-time x=a(x,u)+v x=Ax+ Bu+v
y=c(x,u)+e y=Cx+Du+e
Discrete-time Xer1 = F(x,u)+ v Xxep1 = Fx+ Gu+v
y =h(x,u)+e y=Hx+Ju+e

A=a(x,u), B=a,(x,u), C=cx,u), D=c,(x,u),

and sample: F =T, G = fOT etdtB (ZOH), H= C and J = D.

m Linearized discretization: Sample by solving (if and when possible) the integral

T
(b + T) = F(x(t), u(t)) = /t a(x(7), u(r))d7,

and then linearize using F = f(xk, ux) and G = f(xk, uk).

Chapter 12
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