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Purpose

Description of rotational kinematics for sensor fusion applications.

Rotational kinematics is theoretically a challenging subject.

Goal to describe the key mathematical background.

But with a sensor fusion perspective.

Embed the rotational with translation kinematics to get a complete 3D navigation
framework.
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Summary of Model Discretization

Linear time-invariant (LTI) state-space model:

Continuous time

ẋ = Ax + Bu

y = Cx + Du

Discrete time

xk+1 = Fxk + Guk

yk = Hxk + Juk

u is either input or process noise (then J denotes cross-correlated noise!).

Zero-order hold (ZOH) sampling assuming the input is piecewise constant:

x(t + T ) = eAT x(t) +
∫ T
0
eAτBu(t + T − τ) dτ

= eAT︸︷︷︸
F

x(t) +
∫ T
0
eAτ dτ︸ ︷︷ ︸
G

Bu(t).

First order hold (FOH) sampling assuming the input is piecewise linear, is another
option.
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Rotational Kinematics in 3D

Much more complicated in 3D than 2D! Could be a course in itself.
Coordinate notation for rotations of a body in local coordinate system (x , y , z) relative to
an earth �xed coordinate system:

Motion components Rotation Euler angle Angular speed

Longitudinal forward motion x Roll φ ωx

Lateral motion y Pitch θ ωy

Vertical motion z Yaw ψ ωz
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Euler Orientation in 3D

An earth �xed vector g (for instance the gravitational force) is in the body system oriented
as Qg, where

Q = Qx
φQ

y
θQ

z
ψ

=

1 0 0

0 cosφ sinφ
0 − sinφ cosφ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1


=

 cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ

.
Note:

The result depends on the order of rotations Qx
φQ

y
θQ

z
ψ. Here, the xyz rule is used, but

there are other options.
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Euler Rotation in 3D

When the body rotate with ω, the Euler angles change according toωx

ωy

ωz

 =

φ̇0
0

+ Qx
φ

0

θ̇
0

+ Qx
φQ

y
θ

0
0

ψ̇

 .

The dynamic equation for Euler angles can be derived from this asφ̇ψ̇
θ̇

 =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ) sec(θ) cos(φ) sec(θ)

ωx

ωy

ωz

 .

Singularities when θ = ±π
2
, can cause numeric divergence!
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Unit Quaternions

Vector representation: q = (q0, q1, q2, q3)T .
Norm constraint of unit quaternion: ‖q‖ = qTq = 1.
The quaternion can be interpreted as an axis angle:

q =

(
cos(1

2
α)

sin(1
2
α)v̂

)
,

where q represents a rotation with α around the axis de�ned by v̂ , ‖v̂‖ = 1.

Pros and Cons

+ No singularity.
+ No 2π ambiguity.
� More complex and non-intuitive algebra.
� The norm must be maintained; this can be handled by projection or as a virtual

measurement with small noise.
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Quaternion Orientation in 3D

The orientation of the vector g in body system is Qg, where

Q =

q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q0q2 + 2q1q3
2q0q3 + 2q1q2 q20 − q21 + q22 − q23 −2q0q1 + 2q2q3
−2q0q2 + 2q1q3 2q2q3 + 2q0q1 q20 − q21 − q22 + q23


=

2q20 + 2q21 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q20 + 2q22 − 1 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q20 + 2q23 − 1

 .
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Quaternion Rotation in 3D

Rotation with ω gives a dynamic equation for q which can be written in two equivalent
forms:

q̇ =
1

2
S(ω)q =

1

2
S̄(q)ω,

where

S(ω) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 , S̄(q) =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 .
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Sampled Form of Quaternion Dynamics

The ZOH sampling formula

q(t + T ) = e
1
2
S
(
ω(t)
)
Tq(t)

actually has a closed form solution

q(t + T ) =

(
cos(T

2
‖ω(t)‖)I4 + T

2

sinc(
T
2
‖ω(t)‖)︷ ︸︸ ︷

sin(T
2
‖ω(t)‖)

T
2
‖ω(t)‖

S
(
ω(t)

))
q(t)

≈
(
I4 + T

2
S
(
ω(t)

))
q(t).

The approximation coincides with Euler forward sampling approximation, and has to be
used in more complex models where, e.g., ω is part of the state vector.
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Double Integrated Quaternion

(
q̇(t)
ω̇(t)

)
=

(
1
2
S(ω(t))q(t)

w(t)

)
.

There is no known closed form discretized model. However, the approximate form can be
discretized using the chain rule to(

q(t + T )
ω(t + T )

)
≈
(
I4

T
2
S
(
ω(t)

)
T
2
S̄
(
q(t)

)
03×4 I3

)
︸ ︷︷ ︸

F (t)

(
q(t)
ω(t)

)

+

(
T 3

4
S
(
ω(t)

)
I4

TI3

)
︸ ︷︷ ︸

G(t)

v(t).
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Rigid Body Kinematics

A �multi-purpose� model for all kind of navigation problems in 3D (22 states)

ṗ
v̇
ȧ
q̇
ω̇

ḃacc

ḃgyro


=



0 I 0 0 0
0 0 I 0 0
0 0 0 0 0
0 0 0 −1

2
S(ω) 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





p
v
a
q
ω
bacc

bgyro


+



0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




va

vω

vacc

vgyro

 .

Bias states for the accelerometer and gyroscope have been added as well.
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Sensor Model for Kinematic Model

Inertial sensors (gyroscope, accelerometer, magnetometer) are used as sensors.

yacct = R(qt)(at − g) + bacct + eacct , eacct ∼ N (0,Racc
t ),

ymag
t = R(qt)m + bmag

t + emag
t , emag

t ∼ N (0,Rmag
t ),

ygyrot = ωt + bgyrot + egyrot , egyrot ∼ N (0,Rgyro

t ).

Bias observable, but special calibration routines are recommended:

Stand-still detection: When ‖yacct ‖ ≈ g and/or ‖ygyrot ‖ ≈ 0, the gyro and acc bias is
readily read o�. Can decrease drift in dead-reckoning from cubic to linear.

Ellipse �tting: When �waving the sensor� over short time intervals, the gyro can be
integrated to give accurate orientation, and acc and magnetometer
measurements can be transformed to a sphere from an ellipse.
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Summary

Dynamics for 3D orientation expressed in quaternion q is the most used form in
navigation applications q̇ = 1

2
S(ω)q = 1

2
S̄(q)ω.

Discretized approximate model

q(t + T ) ≈
(
I4 + T

2
S
(
ω(t)

))
q(t).

Quaternion can be part of a larger model with more states:

1. Rotational rates ω.
2. Translational states (p, v , a).
3. Sensor bias states b.

Measurements from accelerometers, gyroscopes and magnetometers can then be used
as inputs and outputs in a Kalman �lter.

Section 13.2 � 13.3
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