

ML and CRLB

Sensor Fusion

Fredrik Gustafsson fredrik.gustafsson@liu.se

Gustaf Hendeby gustaf.hendeby@liu.se

Linköping University

BLUE and MVUE

Repetion of the linear model (which is linear in x):

$$y_k = H_k x + e_k$$
, $Cov(e_k) = R_k$, $k = 1, ..., N$,
 $y = H x + e$, $Cov(e) = R$.

The Best Linear Unbiased Estimator (BLUE) \hat{x} is defined as

- Linear: it has the form $\hat{x} = K\mathbf{v}$
- Unbiased: we require that $E(\hat{x}) = x^0$
- Best: it minimizes the covariance $Cov(\hat{x}) = E(\hat{x} x^0)(\hat{x} x^0)^T$.

WIS is BIUE for the linear model.

In contrast, the Minimum Variance Unbiased Estimator (MVU) minimizes the covariance for any nonlinear estimator $\hat{x} = k(y)$, where the function k(y) is constrained to give an unbiased estimator E(k(y)) = x.

4□ > 4回 > 4 回 > 4

Maximum Likelihood

Definition of the maximum likelihood (ML) estimator

$$\hat{x} = \arg\max_{x} p(\mathbf{y}|x),$$

that is, the value of x that maximizes the likelihood function (distribution of measurements if x was given).

This is the same as minimizing the negative log likelihood

$$\hat{x} = \underset{x}{\operatorname{arg\,min}} - \log p(\mathbf{y}|x) = \underset{x}{\operatorname{arg\,min}} V^{ML}(x)$$

which looks similar to the LS and WLS solutions, but with a different cost function.

The ML is normally neither BLUE or MVU, but has other nice properties.

Maximum Likelihood for Gaussian Distribution

The likelihood function for the Gaussian distribution is

$$p(y_{1:N}|x) = \frac{1}{(2\pi)^{Nn_y/2} \prod_{k=1}^{N} \sqrt{\det(R_k)}} e^{-\frac{1}{2} \sum_{k=1}^{N} (y_k - H_k x)^T R_k^{-1} (y_k - H_k x)}$$
$$= \frac{1}{(2\pi)^{Nn_y/2} \prod_{k=1}^{N} \sqrt{\det(R_k)}} e^{-\frac{1}{2} V^{WLS}(x)}.$$

The (two times) negative log likelihood is thus

$$V^{ML}(x) = -2\log(p(y_{1:N}|x)) = Nn_y\log(2\pi) + \sum_{k=1}^{N}\log(\det(R_k)) + V^{WLS}(x).$$

Since the first two terms do not depend on x, ML and WLS are the same for the Gaussian distribution, so $\hat{x}^{ML} = \hat{x}^{WLS}$.

Maximum Likelihood for non-Gaussian Distributions

- For non-Gaussian distributions, ML is generally better then WLS.
- WLS is still BLUE for non-Gaussian distributions.
- That is, ML has smaller covariance, thus ML is *better* than WLS.
- Is ML also MVU, that is, the best?
- Yes, but only asymptotically!
- Asymptotically, the ML estimate reaches the *Cramér-Rao Lower Bound* (CRLB)

$$\hat{x}^{ML} \to \mathcal{N}(x^o, \mathcal{I}^{-1})$$

■ No estimator can beat the CRLB, thus ML is the at least asymptotically (large amount of data) case.

Fisher Information Matrix

The CRLB is related to the Fisher Information Matrix (FIM) defined from the log likelihood. Key idea: every single data point provides a piece of information measured as

$$\mathcal{I}_k(x) = \mathsf{E}\left[\left(rac{d\log p(y_k|x)}{dx}
ight)\left(rac{d\log p(y_k|x)}{dx}
ight)^T
ight].$$

and the total information is the sum of all information

$$\mathcal{I}_{1:N}(x) = \sum_{k=1}^{N} \mathcal{I}_k(x).$$

The CRLB theorem states that no unbiased estimator can beat the bound

$$\operatorname{Cov}(\hat{x}) \geq \mathcal{I}_{1,N}^{-1}(x^0).$$

Note 1: the FIM has to be evaluated at the true x^0 .

Note 2: for the Gaussian case of the linear model $\mathcal{I}_k(x) = H_k^T R_k^{-1} H_k$, the FIM is independent of x and $\mathcal{I}_{1:N}^{-1} = P^{WLS}$, proving that WLS is the best estimator in this case.

Summary ML and CRLB

- ML maximizes the likelihood for the observed measurements, given the parameter x, with respect to x.
- For the linear model with Gaussian noise, WLS is also ML.
- For the linear model with non-Gaussian noise, ML is usually better than WLS.
- Asymptotically, ML is unbeatable in the MVU sense.
- The CRLB gives a lower bound on all estimators.
- ML attains the CRLB asymptotically.
- Most of the ML theory holds also for non-linear models.

Sections 2.4 and 2.5