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NLS theory

Nonlinear model, where the term Hkx in the linear model is replaced with hk(x)

yk = hk(x) + ek , Cov(ek) = Rk , k = 1, . . . ,N,

y = h(x) + e, Cov(e) = R.

The NLS solution minimizes

x̂NLS = arg min
x

VNLS(x) = arg min
x

1

2

N∑
k=1

(yk − hk(x))TR−1
k (yk − hk(x))

ML for Gaussian noise with parameter dependent covariance R(x)

x̂ML = arg min
x

[
VNLS(x) +

1

2

∑
k

log det(Rk(x))

]
.

Note that we can always evaluate V (x) for a set of grid points x (i) and minimize. This

works �ne for low-dimensional vectors x (dim(x) ≤ 3 as a rule of thumb)
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Radar Example

Radar is used as the standard example in Chapter 3. A radar measures bearing ϕ and range

r to an object located at the unknown position x = (x1, x2)T .

y =

(
r
ϕ

)
= h(x) + e =

( √
x21 + x22

arctan2(x1, x2)

)
+ e

One solution that works in this case is to invert the mapping from x to y = h(x)

x = h−1(y − e),

x1 = y1 cos(y2) = (r − er ) cos(ϕ− eϕ),

x2 = y1 sin(y2) = (r − er ) sin(ϕ− eϕ).

It is not so easy to deal with the noise here. This approach is covered by nonlinear

transformations, and we leave it for now.

Gustafsson and Hendeby NLS 3 / 12



Radar Example

Plot of the mapping x = h−1(yk) for N = 100 measurements of yk for a target at

x0 = (100, 100)T
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How to compute and estimate x̂ and covariance Cov(x̂) from this data set? We need a

method to consistently over time estimate the position from the radar!
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NLS Gradient

Minimize the (unweighted to start with) Nonlinear Least Squares (NLS) cost function

VNLS(x) =
1

2

N∑
k=1

εTk (x)εk(x),

A gradient method takes a step in the negative gradient, which here is

dVNLS(x)

dx
=

N∑
k=1

εk(x)
dεk(x)

dx
= J(x)ε(x)

The gradient J(x) will play an important role

J(x) =


∂ε1
∂x1

∂ε2
∂x1

. . . ∂εN
∂x1

∂ε1
∂x2

∂ε2
∂x2

. . . ∂εN
∂x2

...
...

. . .
...

∂ε1
∂xnx

∂ε2
∂xnx

. . . ∂εN
∂xnx

 =
∂εT (x)

∂x
= −∂h

T (x)

∂x
.
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Gradient Search

Simplest numerical algorithm to solve the NLS estimation problem:

Gradient Search

1. Initialize x̂ (0) to some decent value.

2. Iterate

x̂ (i+1) = x̂ (i) + α(i)J(x̂ (i))
(
y − h(x̂ (i))

)
.

until convergence.

Note:

Here α(i) is a step length that has to be small enough to avoid divergence. It is a scalar

that can be optimized in an inner loop to the value that gives the most decrease of the cost

function.
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Gauss Newton Algorithm

A better and the standard solution to NLS is to apply the Gauss Newton (GN) method.

Here the second order derivative of the cost function is needed.

d2VNLS(x)

dx2
=

N∑
k=1

dεk(x)

dx

(
dεk(x)

dx

)T

+
N∑

k=1

εk(x)
d2εk(x)

dx2

= J(x)JT (x) +
N∑

k=1

εk(x)
d2εk(x)

dx2
.

The GN algorithm neglects the second term in the sum above. Normally, should be much

smaller than the �rst term, which grows with N since it is a quadratic form, which the

second term is not.
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Gauss-Newton Search

Gauss-Newton Search

1. Initialize x̂ (0) to some decent value.

2. Iterate

x̂ (i+1) = x̂ (i) + α(i)
(
J(x̂ (i))JT (x̂ (i))

)−1
J(x̂ (i))

(
y − h(x̂ (i))

)
.

until convergence.

Here α(i) is again a step length that can be optimized in an inner loop.

Note:

The only di�erence between a gradient and the GN search is the modi�ed search direction

factor
(
J(x)JT (x)

)−1
.
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NLS for TOA

� �
th=[0.4 0.1 0.6 0.1]; x0=[0.5 0.5]; % Positions

s=exsensor('toa' ,2); % TOA sensor model

s.th=th; s.x0=x0; % Change defaults

s.pe =0.001* eye (2); % Noise variance

plot(s), hold on % Plot network

y=simulate(s,1); % Generate observations

lh2(s,y ,[0:0.02:1] ,[0:0.02:1]); % Likelihood function plot� �
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The likelihood function and the iterations in the NLS estimate.� �
s0=s; s0.x0 =[0.3;0.3]; % Prior model for estimation

[xhat ,shat ,res]=ml(s0,y); % ML calls NLS

shat % Display estimated signal model

SENSORMOD object: TOA (calibrated from data)

/ sqrt((x(1,:)-th(1)).^2+(x(2,:)-th(2)).^2) \

y = \ sqrt((x(1,:)-th(3)).^2+(x(2,:)-th(4)).^2) / + e

x0 ' = [0.35 ,0.49] + N(0 ,[0.0091 ,0.0031;0.0031 ,0.0017])

th ' = [0.4 ,0.1 ,0.6 ,0.1]

States: x1 x2

Outputs: y1 y2

xplot2(xhat ,'conf' ,90) % Estimate and covariance plot

plot(res.TH(1,:),res.TH(2,:),'*-') % Estimate for each iteration� �
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Conditionally linear models

Suppose one part xl of the parameter vector xT = (xTl , x
T
n )T appears linearly

yk = hk(xn)xl + ek , Cov(ek) = Rk(xn),

Separable least squares: The WLS solution for xl is explicitly given by

x̂WLS
l (xn) =

(
N∑

k=1

hTk (xn)R−1
k (xn)hk(xn)

)−1 N∑
k=1

hTk (xn)R−1
k (xn)yk .

for each value of xn.
Plugging in this solution into the nonlinear model, we get a new nonlinear model with less

parameters

yk = hk(xn)x̂WLS
l (xn) + ēk .

Care has to be taken to modify the covariance of the new noise ēk , which now also includes

uncertainty from the estimate besides the measurement noise.
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Summary NLS

For the nonlinear model y = h(x) + e, Cov(e) = R, NLS minimizes

x̂NLS = arg min
x

VNLS(x) = arg min
x

1

2
(y − h(x))TR−1(y − h(x))

Approaches to minimize VNLS(x)

Numerically with either a (i) grid search (low-dimensional x , (ii) a gradient method

(for almost linear models) or (iii) a Gauss-Newton search (that handles nonlinearities

better).

Further alternatives are provided by nonlinear transforms.

If linear sub-structure exists, h(x) = h(xn)xl , then xl can be eliminated with WLS.

Sections 3-3.2 and 3.6
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