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NLS theory

Nonlinear model, where the term Hjx in the linear model is replaced with hy(x)

Yk = hi(x) + ek, Cov(ex) = Ry,
y =h(x) +e,

The NLS solution minimizes

k=1,....N,
Cov(e) =R.

N
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NS = arg min VVES (x) = arg min 5 Z(}/k — hk(x))TRk Yy — hi(x))
X X k=1

ML for Gaussian noise with parameter dependent covariance R(x)

)?ML

= arg min
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Note that we can always evaluate V/(x) for a set of grid points x() and minimize. This

works fine for low-dimensional vectors x (dim(x) < 3 as a rule of thumb)
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Radar Example

Radar is used as the standard example in Chapter 3. A radar measures bearing ¢ and range
r to an object located at the unknown position x = (x1,x2) ' .

2, .2
y:<r):h(x)+e= VTR ) e
¥ arctan2(xi, x2)

One solution that works in this case is to invert the mapping from x to y = h(x)

X = h_l(y —e),

x1 = y1cos(y2) = (r — e;) cos(p — e,),

xo = y1sin(y2) = (r — e)sin(p — e,).

It is not so easy to deal with the noise here. This approach is covered by nonlinear
transformations, and we leave it for now.
h.v
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Radar Example
Plot of the mapping x = h™1(y,) for N = 100 measurements of y for a target at
x% = (100,100)"
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How to compute and estimate X and covariance Cov(X) from this data set? We
method to consistently over time estimate the position from the radar! _
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NLS Gradient

Minimize the (unweighted to start with) Nonlinear Least Squares (NLS) cost function

VLS (%) Zsk )ek(x),

A gradient method takes a step in the negatlve gradient, which here is

vaLS ds
Zek k = J(x)e(x)
The gradient J(x) will play an important role
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Gradient Search

Simplest numerical algorithm to solve the NLS estimation problem:
Gradient Search

1. Initialize £(°) to some decent value.
2. lterate

Ui+ — 2() 4 a(i)J()“((i))(y _ h(y((i)))‘

until convergence.

Here ol’) is a step length that has to be small enough to avoid divergence. It is a scalar

that can be optimized in an inner loop to the value that gives the most decrease of the cost
function.

h.v
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Gauss Newton Algorithm

d2 VNLS(X)

dx? -

_ é de;((x) (dek ) +25
= J(x)

(%) —i—ZEk(x)d filx
k=1

A better and the standard solution to NLS is to apply the Gauss Newton (GN) method
Here the second order derivative of the cost function is needed

Ek(X

The GN algorithm neglects the second term in the sum above. Normally, should be much
second term is not.

h.v
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smaller than the first term, which grows with N since it is a quadratic form, which the
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Gauss-Newton Search
Gauss-Newton Search

1. Initialize £(©) to some decent value.
2. lterate

until convergence.

U+ — () 4 a(i)(J()’g("))JT()’g(")))_1J()’g("))(y _ h(y((i)))'

factor (J(x)J7(x))

Here a(?) is again a step length that can be optimized in an inner loop.
il
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The only difference between a gradient and the GN search is the modified search direction
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NLS for TOA

th=[0.4 0.1 0.6 0.11; x0=[0.5 0.5]1;
s=exsensor(’toa’,2);

s.th=th; s.x0=x0;
s.pe=0.001%eye (2);

plot(s), hold on

y=simulate (s,1);
1h2(s,y,[0:0.02:11,[0:0.02:11);

! Positions

/ TO04 sensor model

/ Change defaults

/ Noise variance

/ Plot network

/ Generate observations

/ Likelihood function plot

h.v
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The likelihood function and the iterations in the NLS estimate.

s0=s; s0.x0=[0.3;0.3]; / Prior model for estimation
[xhat ,shat ,res]=ml(s0,y); 4 ML calls NLS
shat / Display estimated signal model

SENSORMOD object: TOA (calibrated from data)
/ sqrt ((x(1,:)-th(1)).~2+(x(2,:)-th(2))."2) \
vy = \ sqrt((x(1,:)-th(3)).~2+(x(2,:)-th(4))."2) / + e

x0? = [0.35,0.49] + N(0,[0.0091,0.0031;0.0031,0.0017])
th’ = [0.4,0.1,0.6,0.1]
States: x1 x2
Qutputs: yi y2
xplot2(xhat,’conf’,90) / Estimate and covariance plot

plot (res.TH(1,:),res.TH(2,:),7*%-7) / Estimate for each iteration

ar <@ - z, 3 9ac
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Conditionally linear models

Suppose one part x; of the parameter vector x" = (X/T, x])T appears linearly

Yk = hk(X,,)X/ + ek, Cov(ek) = Rk(X,,),
Separable least squares: The WLS solution for x; is explicitly given by

N

1
AIWLS <Z hk xn)R Xn)hk(xn)> Z hIZ—(Xn)Rk_l(Xn)Yk

k=1

for each value of x,.

Plugging in this solution into the nonlinear model, we get a new nonlinear model with less
parameters

Yk = hk(Xn))?/WLS(Xn) + ék.

Care has to be taken to modify the covariance of the new noise &, which now also includes
uncertainty from the estimate besides the measurement noise.
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Summary NLS
For the nonlinear model y = h(x) + e,

X

Cov(e) = R, NLS minimizes
RNES = arg min VVES (x)

.1 _
— arg min 3y — h(x)) TR (y — h(x)
Approaches to minimize VN5 (x)

better).

m Numerically with either a (i) grid search (low-dimensional x, (ii) a gradient method
(for almost linear models) or (iii) a Gauss-Newton search (that handles nonlinearities

m Further alternatives are provided by nonlinear transforms.

Sections 3-3.2 and 3.6
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If linear sub-structure exists, h(x) = h(xp)x;, then x; can be eliminated with WLS.
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