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Purpose

Derive the Bayes optimal filtering recursion
m Dynamic state-space models: xx41 = f(xk, vk).
m Measurement model: yx = h(xk, ex).

m General Bayesian solution

m Derivation based on Bayes law p(A, B) = p(A|B)p(B) in different variations!
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State-Space Models

Vi = h(x, ex)

We will derive the Bayes' optimal filter for the general nonlinear model, here defined by the
or

conditional probability p(xk+1|y1:x) (Markov model) and p(yx|xk) (likelihood):
X1 = f(xk, vk)

or

X1 X ~ P(Xk41]xk)
Yilxk ~ p(yilxk)
To make it more concrete, consider the special case of a linear Gaussian model with
Vi ~ N(O, Qk), e ~ N(O, Rk) and Xo ~ N(O, Po)
X1 = Fxi + Gy vk or
Yk = Hxi + ex

or

h.v
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X1 Xk ~ P(Xit1[xk) = N (xk41 — Fxk, GQGT)
yilxi ~ p(yklxk) = N (v — H(x«), R)

Bayes Optimal Filter Recursion

W

/ 14



Bayesian estimation approach: MAP estimate

m Maximum a posteriori (MAP) estimate defined by

X = arg max p(x|y) = arg max Ply)p()
x x p(y)
m Often (for symmetrical distributions), the MAP estimate coincides with the Mimimum
Mean Square Error (MMSE) estimate.
m Combine current information in likelihood with the prior p(x).

m By letting the prior come from past observations, a natural recursive algorithm is
obtained.
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Bayesian estimation approach: Measurement Update (1/2)

Consider Bayes' theorem in the form

o415 ¢) — PLBIA CIp(AIC)

p(B|C)
Assume that
A= Xk
B = yx
C=Yik-1= {Y17 e a}/kfl}
B,C = y1.k
ther (i )y 1)
P\Yk|Xky Y1:k—1 )P\ Xk |Y1:k—1
P(Xkbﬁ:k) =
p(Ykly1:k—1)
=] = QR
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Bayesian estimation approach: Measurement Update (2/2)

Components in

P\Yk|Xky Y1:k—1 )P\ Xk |Y1:k—1
P(xelyrn) = A )p(x«| )
P(Yk|yi:k—1)

Vil yi:k—1) = P(yk|xk) = Pe (v — h(x«)) (last step additive!)

m p(
m p(yk|xk) = measurement likelihood

m p(xk|y1.k—1) = prior state information
m p

Yk|¥1:k—1) = x independent normalizing constant = «

=
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Consider Bayes' theorem, now in another form

Bayesian estimation approach: Time Update (1/2)

p(A, B|C) = p(A[B, C)p(B|C)
Identifying terms gives

P(Xkt1, Xk |y1:6) = P(Xk1]Xk5 Y1:6) P(Xk | y2:K)
with the components

P (X1 %k, yi:k) = P(Xks1|xk)

(Markov property)
= pv(xk+1 — f(x«)) (Additive process noise)
p(xk|ly1.x) Given by the measurement update

h.v
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Bayesian estimation approach: Time Update (2/2)

We need one more step to marginalize p(xx11, Xk|y1:x) to get rid of the xx quantity.
Marginalization is in Bayesian notation defined by
p(AIC) = [ plA BIC) dE =
This gives

p Xk+1|)/1 k

P(Xk41, Xk | y1:k) dXic
h.v

/ P(Xk+1|xk)P
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Bayesian estimation approach: summary

Bayes' Solution: nonlinear model with additive noise

a= / Pex (Y — h(xi)) p(xk|y1:k—1) dxi,
Ry

pOxklyik) = 2pe (v — h(xk)) P(xk|y1:k-1)

P(Xk+1ly1:k) = / Pu(Xk+1 — F(xk)) P(xk|ya:k) dxi
Rrx
posterior during:

m the nonlinear transformation f(x).

To get analytical solution, we need a model that keeps the same functional form
m the addition of f(xx) and vg.

of the
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m the inference of x, from y, done in the measurement update.
h.v
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Practical Cases with Analytic Solution

Bayes solution can be represented with finite dimensional statistics
analytically in the following cases:

m Linear Gaussian model (Kalman filter)

m Hidden Markov model (HMM)

m Linear-Gaussian mixture (Kalman filter filterbank; however
exponential complexity in time)
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The Kalman filter

Consider a linear Gaussian model. Then the posterior distributions will also be Gaussian in
the Bayes optimal filter, and the optimal filter becomes recursions for the mean and
covariance, respectively.

m Prediction density p(xkt1|y1:k) = N()?k+1|k, Pk+1\k)v where

Ri11k =FrRu ik

Pii1k =FiPuiFid + Qi
m Filtering density p(xi|y1:6) = N (Rkjks Pj). where

Kk =Rujk—1 + Prik—1 HE (kP H + Ri) ™ (v — HiXiga—1)
h.v

Piik =Prjk—1 — Prjk—1 H{ (HikPrgk—1Hi + Ri) ™ HicPrgr—1.-
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General Approximation Approaches

In most practical problems, no analytical solution exists, and the Bayes optimal filter must
be approximated.
1. Approximate the model to a case where an optimal algorithm exists.
@ Extended KF (EKF) which approximates the model with a linear one.
@ Unscented KF (UKF) and EKF2 that apply higher order approximations.
2. Approximate the optimal nonlinear filter for the original model.

@ Point-mass filter (PMF) which uses a regular grid of the state space and applies the
Bayesian recursion.

@ Particle filter (PF) which uses a random grid of the state space and applies the Bayesian
recursion.
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A General Bayesian Filter Framework

Interpretation of Bayes’ solution in terms of the sensor fusion formula:

P(xilyrk) = Lpe(yi — h(xi)) P(xkly1:k-1)

P(Xk+1ly1:k) = / Pue(Xk1 — F(xk)) p(xicly:ic) dxi
Rix

1. Estimation: Provides the complete distribution p(xk|yx)-

2. Fusion: Estimated information p(xx|yx) is merged with the prior
information p(xk|y1:x—1) to obtain p(xk|y1:x)-

3. Transformation: Propagate information through the dynamics
z = f(xk, uk). This gives p(z|y1:«)-

4. Diffusion: Add uncertainty from the process noise. This gives
P(Xk-+1]y1:k)-
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Summary
m Bayes optimal filter in most general form

pOxk|yiik) = 2pe(vk — h(xk)) P(xk|y1:6-1)

P(Xk+1ly1:k) = / Puc(Xir1 — F(xk)) p(xicly1:k) dxi
R

m and for state space models with additive noise

POxk|yik) = L pe, (yk — h(xi)) POxk|yaik—1)

p(xks1ly1:k) = [Pve (k1 — F(xk)) P(xk|ya k) dxi.
Section 6.3
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