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Purpose

Derive the Bayes optimal �ltering recursion

Dynamic state-space models: xk+1 = f (xk , vk).

Measurement model: yk = h(xk , ek).

General Bayesian solution

Derivation based on Bayes law p(A,B) = p(A|B)p(B) in di�erent variations!
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State-Space Models

We will derive the Bayes' optimal �lter for the general nonlinear model, here de�ned by the

conditional probability p(xk+1|y1:k) (Markov model) and p(yk |xk) (likelihood):

xk+1 = f (xk , vk) or xk+1|xk ∼ p(xk+1|xk)
yk = h(xk , ek) or yk |xk ∼ p(yk |xk)

To make it more concrete, consider the special case of a linear Gaussian model with

vk ∼ N (0,Qk), ek ∼ N (0,Rk) and x0 ∼ N (0,P0)

xk+1 = Fxk + Gkvk or xk+1|xk ∼ p(xk+1|xk) = N
(
xk+1 − Fxk ,GQG

T
)

yk = Hxk + ek or yk |xk ∼ p(yk |xk) = N
(
yk − H(xk),R

)
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Bayesian estimation approach: MAP estimate

Maximum a posteriori (MAP) estimate de�ned by

x̂ = argmax
x

p(x |y) = argmax
x

p(y |x)p(x)
p(y)

Often (for symmetrical distributions), the MAP estimate coincides with the Mimimum

Mean Square Error (MMSE) estimate.

Combine current information in likelihood with the prior p(x).

By letting the prior come from past observations, a natural recursive algorithm is

obtained.
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Bayesian estimation approach: Measurement Update (1/2)

Consider Bayes' theorem in the form

p(A|B,C ) =
p(B|A,C )p(A|C )

p(B|C )

Assume that

A = xk

B = yk

C = y1:k−1 = {y1, . . . , yk−1}
B,C = y1:k

then

p(xk |y1:k) =
p(yk |xk , y1:k−1)p(xk |y1:k−1)

p(yk |y1:k−1)
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Bayesian estimation approach: Measurement Update (2/2)

Components in

p(xk |y1:k) =
p(yk |xk , y1:k−1)p(xk |y1:k−1)

p(yk |y1:k−1)

p(yk |xk , y1:k−1) = p(yk |xk) = pe
(
yk − h(xk)

)
(last step additive!)

p(yk |xk) = measurement likelihood

p(xk |y1:k−1) = prior state information

p(yk |y1:k−1) = x independent normalizing constant = α
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Bayesian estimation approach: Time Update (1/2)

Consider Bayes' theorem, now in another form

p(A,B|C ) = p(A|B,C )p(B|C )

Identifying terms gives

p(xk+1, xk |y1:k) = p(xk+1|xk , y1:k)p(xk |y1:k)

with the components

p(xk+1|xk , y1:k) = p(xk+1|xk) (Markov property)

= pv
(
xk+1 − f (xk)

)
(Additive process noise)

p(xk |y1:k) Given by the measurement update
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Bayesian estimation approach: Time Update (2/2)

We need one more step to marginalize p(xk+1, xk |y1:k) to get rid of the xk quantity.

Marginalization is in Bayesian notation de�ned by

p(A|C ) =

∫
p(A,B|C ) dB ⇒

This gives

p(xk+1|y1:k) =
∫

p(xk+1, xk |y1:k) dxk

=

∫
p(xk+1|xk)p(xk |y1:k) dxk
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Bayesian estimation approach: summary

Bayes' Solution: nonlinear model with additive noise

α =

∫
Rny

pek
(
yk − h(xk)

)
p(xk |y1:k−1) dxk ,

p(xk |y1:k) = 1
αpek

(
yk − h(xk)

)
p(xk |y1:k−1)

p(xk+1|y1:k) =
∫
Rnx

pvk
(
xk+1 − f (xk)

)
p(xk |y1:k) dxk

To get analytical solution, we need a model that keeps the same functional form of the

posterior during:

the nonlinear transformation f (xk).

the addition of f (xk) and vk .

the inference of xk from yk done in the measurement update.
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Practical Cases with Analytic Solution

Bayes solution can be represented with �nite dimensional statistics

analytically in the following cases:

Linear Gaussian model (Kalman �lter)

Hidden Markov model (HMM)

Linear-Gaussian mixture (Kalman �lter �lterbank; however

exponential complexity in time)
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The Kalman �lter

Consider a linear Gaussian model. Then the posterior distributions will also be Gaussian in

the Bayes optimal �lter, and the optimal �lter becomes recursions for the mean and

covariance, respectively.

Prediction density p(xk+1|y1:k) = N
(
x̂k+1|k ,Pk+1|k

)
, where

x̂k+1|k =Fk x̂k|k

Pk+1|k =FkPk|kF
T
k + Qk

Filtering density p(xk |y1:k) = N
(
x̂k|k ,Pk|k

)
, where

x̂k|k =x̂k|k−1 + Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1(yk − Hk x̂k|k−1)

Pk|k =Pk|k−1 − Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1HkPk|k−1.
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General Approximation Approaches

In most practical problems, no analytical solution exists, and the Bayes optimal �lter must

be approximated.

1. Approximate the model to a case where an optimal algorithm exists.
i.) Extended KF (EKF) which approximates the model with a linear one.
ii.) Unscented KF (UKF) and EKF2 that apply higher order approximations.

2. Approximate the optimal nonlinear �lter for the original model.
i.) Point-mass �lter (PMF) which uses a regular grid of the state space and applies the

Bayesian recursion.
ii.) Particle �lter (PF) which uses a random grid of the state space and applies the Bayesian

recursion.

Gustafsson and Hendeby Bayes Optimal Filter Recursion 12 / 14



A General Bayesian Filter Framework

Interpretation of Bayes' solution in terms of the sensor fusion formula:

p(xk |y1:k) = 1
αpek

(
yk − h(xk)

)
p(xk |y1:k−1)

p(xk+1|y1:k) =
∫
Rnx

pvk
(
xk+1 − f (xk)

)
p(xk |y1:k) dxk

1. Estimation: Provides the complete distribution p(xk |yk).
2. Fusion: Estimated information p(xk |yk) is merged with the prior

information p(xk |y1:k−1) to obtain p(xk |y1:k).
3. Transformation: Propagate information through the dynamics

z = f (xk , uk). This gives p(z |y1:k).
4. Di�usion: Add uncertainty from the process noise. This gives

p(xk+1|y1:k).
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Summary

Bayes optimal �lter in most general form

p(xk |y1:k) = 1
αpek

(
yk − h(xk)

)
p(xk |y1:k−1)

p(xk+1|y1:k) =
∫
Rnx

pvk
(
xk+1 − f (xk)

)
p(xk |y1:k) dxk

and for state space models with additive noise

p(xk |y1:k) = 1
αpek

(
yk − h(xk)

)
p(xk |y1:k−1)

p(xk+1|y1:k) =
∫
pvk
(
xk+1 − f (xk)

)
p(xk |y1:k) dxk .

Section 6.3
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