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Kalman Filter

The Kalman �lter is the exact solution to the Bayesian �ltering recursion
for linear Gaussian model

xk+1 = Fkxk + Gkvk , Cov(vk) = Qk

yk = Hkxk + ek , Cov(ek) = Rk ,

assuming E(vk) = 0, E(ek) = 0, and mutual independence.

Kalman Filter (KF) Algorithm

Time update: x̂k+1|k = Fk x̂k|k

Pk+1|k = FkPk|kF
T
k + GkQkG

T
k

Meas. update: x̂k|k = x̂k|k−1 + Kk(yk − ŷk)

Pk|k = Pk|k−1 − KkPk|k−1

ŷk = Hk x̂k|k−1 εk = yk − ŷk

Kk = Pk|k−1H
T
k S−1 Sk = HkPk|k−1H

T
k + Rk
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Kalman Filter: limitations

Only linear models
Addressed by extended Kalman �lter (EKF), unscented Kalman �lter (UKF), etc.

Only uni-modal posterior: the estimate is only a mean and covariance
Solved using point-mass �lter (PMF), particle �lter (PF), or �lter banks.

Systems with distinct modes

E.g., a commercial aircraft that either �ies in a straight line or makes coordinated
turns; or inlier and outlier measurements.
Di�erent approaches:

Use high process and/or measurement noise to �hide� the di�erent system
behaviors, at the cost of loss of �lter performances.

Use bank of �lters considering di�erent mode possibilities, estimating both
mode and state. With many enough components, this can be an arbitrarily
good approximation.
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Models Combining Several Behaviors

Jump Markov Linear (JML) Model

xk+1 = F (δk)xk + wk(δk) wk(δk) ∼ N
(
(0,Q(δk)

)
yk = H(δk)xk + ek(δk) ek(δk) ∼ N

(
(0,R(δk)

)
(δk |δk−1) ∼ p(δk |δk−1)

where δk is a discrete valued Markov process, typically given by the
transition matrix Π (Πδk−1δk = Pr(δk |δk−1)), to indicate the current
mode of the model.

Well-de�ned modes.

Given the mode sequence, the system is linear Gaussian.
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Filter Bank

Both the state xk and the mode δk must be
estimated.

Conditioned on the mode sequence δ1:k the
estimate of xk is given by the Kalman �lter.

The process of enumerating all possible mode
sequences in the next step is called branching.

A �lter bank is an estimator that maintains a KF
for each �interesting� mode sequence, with

matching probability, ω
(δ1:k )
k|k .

The resulting posterior estimate is a weighted
sum of all �lters in the �lter bank.
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Branching between time k and k + 1.

Each mode sequence at time k gives rise

to N new sequences at time k + 1.
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Illustration (1/3)

Simulated trajectory with CV, CT, and
CA segments.

Position measurements.

Compared �lters:

• KF with CV low process noise.
• KF with CV high process noise.
• Filter bank (interacting multiple model,

IMM, �lter) with CV, CT, and CA
models.
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Example taken from MATLAB Sensor Fusion and Tracking toolbox.
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Illustration (2/3)
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The low process noise KF clearly cannot
keep up.

The high process noise KF, keeps up
better but is slightly noisier than the
IMM �lter.

Di�erences not very visible in this plot.

The predominant models in the IMM
matches the simulated trajectory well.
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Illustration (3/3)
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Algorithm Details

Each KF is maintained independently in the �lter bank, assuming the
speci�c mode sequence.

Equations to update the �lter probabilities/weights

ω
(δ1:k+1)
k+1|k = p(δk+1|δk)ω

(δ1:k )
k|k

ω
(δ1:k )
k|k =

p(yk |δ1:k , y1:k−1)ω
(δ1:k )
k|k−1∑

δ1:k
p(yk |δ1:k , y1:k−1)ω

(δ1:k )
k|k−1

=
N (yk |ŷ (δ1:k )

k ,S
(δ1:k )
k )ω

(δ1:k )
k|k−1∑

δ1:k
N (yk |ŷ (δ1:k )

k ,S
(δ1:k )
k )ω

(δ1:k )
k|k−1

Resulting Gaussian mixture posterior distribution

p(xk |y1:k) =
∑

δ1:k

ω
(δ1:k )
k|k p(xk |y1:k , δ1:k) =

∑
δ1:k

ω
(δ1:k )
k|k N (xk |x̂ (δ1:k )

k|k ,P
(δ1:k )
k|k )

The MMSE given the individual KF estimates with mean and covariance
(x̂ (δ), P(δ)) becomes:

x̂ =
∑

δ
ω(δ)x̂ (δ)

P =
∑

δ
ω(δ)

(
P(δ) + (x̂ (δ) − x̂)(x̂ (δ) − x̂)T︸ ︷︷ ︸

Spread of the mean

)
.
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Filter Bank: problem

Filter banks grows with combinatorial complexity, hence it quickly becomes
unmanageable.

Common approximations:

Pruning: Drop unlikely branches,
Merging: Combine branches with recent common heritage.
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Filter Bank Approximation: pruning

1

2

N

2Pruning

Timek − L k − L+ 1 k Timek − L k − L+ 1 k

Prune branches with low probability:

• Mode sequences with too low
probability.

• �Trees� with too low accumulated
probability since L steps back.

After reducing the �lter bank to suitable
size, re-normalize the remaining weights,
δ ∈ ∆, such that∑

δ∈∆

ω(δ) = 1.
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Filter Bank Approximation: merging

Reduce the �lter bank by combining
mode sequences that have recently been
similar.

The weight of the merged mode
sequences, δ ∈ ∆, are add up to the
weight of the merged branch, δ′,

ω(δ′) =
∑

δ∈∆
ω(δ).

The mean and covariance becomes

x̂ (δ′) = 1

ω(δ′)

∑
δ∈∆

ω(δ)x̂ (δ)

P(δ′) = 1

ω(δ′)

∑
δ∈∆

ω(δ)
(
P(δ) + (x̂ (δ) − x̂)(x̂ (δ) − x̂)T

)
.
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Summary

Jump Markov linear (JML) models; models which behave
di�erently based on a discrete mode, which evolves according to a
Markov process.
Jointly estimate state and mode using a bank of �lters:

• Enumerate all possible mode sequences, and run a regular �lter
for each in parallel.

• Compute the probability for each mode sequence.
• The posterior is a weighted sum of the solutions for each mode

sequence.

Reduce the computational complexity: pruning and merging.
Kalman �lter banks can, contrary to the Kalman �lter, handle
multi-modal posterior distributions.
Famous algorithms: Generalized pseudo-Bayesian (GPB) and
interacting multiple models (IMM) �lters.

Chapter 10
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