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The Kalman Filter

The Kalman filter is the exact solution to the Bayesian filtering recursion
for linear Gaussian model

Xk+1 = Fixi + Givi, Cov(vk) = Q«
Yk = Hiex + ex, Cov(ex) = R,
assuming E(vx) =0, E(ex) = 0, and mutual independence.
Kalman Filter Algorithm
Time update: Rit1k = FiXjk

Pii1jk = FkPkFd + GeQiGl

Meas. update: Rk = Rjk—1 + Ki(yx — k)
Prik = Prjk—1 — Ki Pijk—1
Ik = HiXij—1 €k = Yk — Yk

Kk = Pr—tHES™ Sk = HiPrj—1 HE + R

[m] = = =
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Optimality Properties

m For a linear model, the Kalman filter provides the WLS solution.
m The KF is the best linear unbiased estimator (BLUE).
m The measurements only affect X not P, which can be precomputed.

m It is the Bayes optimal filter for linear model when xq, vk, e are
Gaussian variables,

(xklyk—1) ~ N (Rejk—1 Prj—1)
(xk|y1:6) ~ N (K> Prji)
Ek ~ N(O, Sk)
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Robustness and Sensitivity

The following concepts are relevant for all filtering applications, but they
are most explicit for Kalman filter:

m Observability: Is revealed indirectly by Pj,; monitor its rank or
better condition number.

m Divergence tests: Monitor performance measures and restart the
filter after divergence.

m Qutlier rejection: Monitor sensor observations.
m Bias error: Incorrect model gives bias in estimates.

m Sensitivity analysis: Uncertain model contributes to the total
covariance.

m Numerical issues: May give complex estimates.

II."H“K/%;%;V Gustafsson and Hendeby Kalman Filter Properties 4/9




Observability

1. Snapshot observability if Hy has full rank. WLS can be applied to
estimate x.

2. Classical observability for time-invariant and time-varying case,

H Hi—n+1
HF Hik—n+2Fk—n+1
0= HF? Ok = | Hi=n+3Fk—nt2Fi—nt1
HFr—1 L R

3. The covariance matrix Py, extends the observability condition by
weighting with the measurement noise and to forget old information
according to the process noise. Thus, (the condition number of)
Py« is the natural indicator of observability!
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Divergence Monitoring

When is skskT significantly larger than its computed expected value
S, = E(Eké“;(r) (note that g4 ~ N(O, Sk))7

Principal reasons
m Model errors

m Sensor model errors: offsets, drifts, incorrect covariances, scaling
factor in all covariances

m Sensor errors: outliers, missing data

m Numerical issues

Solutions
m In the first two cases, the filter has to be redesigned.

m In the last two cases, the filter has to be restarted.
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Rejecting Outlier

Outlier rejection as a hypothesis test
Let Hp : ex ~ N (0, Sx), then

T(y) =i S ten ~ xa,

if everything works fine, and there is no outlier. If T(yx) > hp,_, this is
an indication of outlier, and the measurement update can be omitted.

In the case of several sensors, each sensor / should be monitored for
outliers

T(yi) = (ek) " S tek ~ X3, -

k
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Numerical Issues

Square Root Implementation

Square root implementations implicitly ensure symmetric and positive
covariance matrices, and halve the order of the condition number.

Quick fixes
m Impose that the covariance matrix is symmetric
P =0.5%P + 0.5%xP’.

m Use the more numerically stable Joseph’s form for the

measurement update of the covariance matrix:
Pik = (I = KiHi) Pu—1(1 — KicHi) ™ + Kk ReK,! -

m Assure that the covariance matrix is positive definite by setting
negative eigenvalues in P to zero or small positive values.

m Avoid singular R = 0, even for constraints.

m Increase Q and R if needed (dithering); this can account for all kind
of model errors.
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Summary

m The Kalman filter is BLUE for linear models and the optimal
estimator for linear Gaussian models.

m Consider the following factors when designing your (Kalman) filter:
e Observability

Divergence monitoring

Outlier rejection

Numerical issues

Model uncertainties

Section 7.2-7.7
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