

Kalman Filter Properties Sensor Fusion

Fredrik Gustafsson fredrik.gustafsson@liu.se Gustaf Hendeby gustaf.hendeby@liu.se

(a) (B) (C) (C) (C)

Linköping University

The Kalman Filter

The Kalman filter is the exact solution to the Bayesian filtering recursion for linear Gaussian model

$$\begin{aligned} x_{k+1} &= F_k x_k + G_k v_k, & \operatorname{Cov}(v_k) = Q_k \\ y_k &= H_k x_k + e_k, & \operatorname{Cov}(e_k) = R_k, \\ \text{ming } \mathsf{E}(v_k) &= 0 \quad \mathsf{E}(e_k) = 0 \quad \text{and mutual independence} \end{aligned}$$

assuming $E(v_k) = 0$, $E(e_k)$ U, and mutual independence.

Kalman Filter Algorithm Time update: $\hat{x}_{k+1|k} = F_k \hat{x}_{k|k}$ $P_{k+1|k} = F_k P_{k|k} F_k^T + G_k Q_k G_k^T$ $\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k(y_k - \hat{y}_k)$ Meas. update: $P_{k|k} = P_{k|k-1} - K_k P_{k|k-1}$ $\hat{y}_k = H_k \hat{x}_{k|k-1} \qquad \varepsilon_k = y_k - \hat{y}_k$ $K_k = P_{k|k-1}H_k^T S^{-1} \qquad S_k = H_k P_{k|k-1}H_k^T + R_k$

= nar

Optimality Properties

- For a linear model, the Kalman filter provides the WLS solution.
- The KF is the best linear unbiased estimator (BLUE).
- The measurements only affect \hat{x} not P, which can be precomputed.
- It is the Bayes optimal filter for linear model when x₀, v_k, e_k are Gaussian variables,

$$egin{aligned} & (x_k|y_{k-1}) \sim \mathcal{N}(\hat{x}_{k|k-1}, P_{k|k-1}) \ & (x_k|y_{1:k}) \sim \mathcal{N}(\hat{x}_{k|k}, P_{k|k}) \ & arepsilon_k \sim \mathcal{N}(0, S_k). \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Robustness and Sensitivity

The following concepts are relevant for all filtering applications, but they are most explicit for Kalman filter:

- Observability: Is revealed indirectly by P_{k|k}; monitor its rank or better condition number.
- **Divergence tests:** Monitor performance measures and restart the filter after divergence.
- Outlier rejection: Monitor sensor observations.
- **Bias error:** Incorrect model gives bias in estimates.
- Sensitivity analysis: Uncertain model contributes to the total covariance.
- **Numerical issues:** May give complex estimates.

Observability

- 1. Snapshot observability if H_k has full rank. WLS can be applied to estimate x.
- 2. Classical observability for time-invariant and time-varying case,

$$\mathcal{O} = \begin{pmatrix} H \\ HF \\ HF^{2} \\ \vdots \\ HF^{n-1} \end{pmatrix} \qquad \mathcal{O}_{k} = \begin{pmatrix} H_{k-n+1} \\ H_{k-n+2}F_{k-n+1} \\ H_{k-n+3}F_{k-n+2}F_{k-n+1} \\ \vdots \\ H_{k}F_{k-1}\dots F_{k-n+1} \end{pmatrix}$$

3. The covariance matrix $P_{k|k}$ extends the observability condition by weighting with the measurement noise and to forget old information according to the process noise. Thus, (the condition number of) $P_{k|k}$ is the natural indicator of observability!

San

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Divergence Monitoring

When is $\varepsilon_k \varepsilon_k^T$ significantly larger than its computed expected value $S_k = \mathsf{E}(\varepsilon_k \varepsilon_k^T)$ (note that $\varepsilon_k \sim \mathcal{N}(0, S_k)$)?

Principal reasons

- Model errors
- Sensor model errors: offsets, drifts, incorrect covariances, scaling factor in all covariances
- Sensor errors: outliers, missing data
- Numerical issues

Solutions

- In the first two cases, the filter has to be redesigned.
- In the last two cases, the filter has to be restarted.

Gustafsson and Hendeby

San

Rejecting Outlier

Outlier rejection as a hypothesis test

Let $H_0: \varepsilon_k \sim \mathcal{N}(0, S_k)$, then

$$\mathcal{T}(y_k) = arepsilon_k^T S_k^{-1} arepsilon_k \sim \chi^2_{n_{y_k}}$$

if everything works fine, and there is no outlier. If $T(y_k) > h_{P_{fa}}$, this is an indication of outlier, and the measurement update can be omitted.

In the case of several sensors, each sensor i should be monitored for outliers

$$T(y_k^i) = (\varepsilon_k^i)^T S_k^{-1} \varepsilon_k^i \sim \chi_{n_{y_k^i}}^2.$$

Numerical Issues

Square Root Implementation

Square root implementations implicitly ensure symmetric and positive covariance matrices, and halve the order of the condition number.

Quick fixes

Impose that the covariance matrix is symmetric

P = 0.5*P + 0.5*P'.

Use the more numerically stable Joseph's form for the measurement update of the covariance matrix:

$$P_{k|k} = (I - K_k H_k) P_{k|k-1} (I - K_k H_k)^T + K_k R_k K_k^T.$$

- Assure that the covariance matrix is positive definite by setting negative eigenvalues in P to zero or small positive values.
- Avoid singular R = 0, even for constraints.
- Increase Q and R if needed (dithering); this can account for all kind of model errors.

Sar

Summary

- The Kalman filter is BLUE for linear models and the optimal estimator for linear Gaussian models.
- Consider the following factors when designing your (Kalman) filter:
 - Observability
 - Divergence monitoring
 - Outlier rejection
 - Numerical issues
 - Model uncertainties

