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Basic Particle Filter (SIR) Algorithm

The particle �lter (PF) is an approximate solution to the Bayesian �ltering recursion
for nonlinear state-space models:

xk+1 = f (xk , vk), vk ∼ pv

yk = h(xk) + ek ek ∼ pe .

Particle Filter Algorithm

Initialization: Generate x
(i)
0 ∼ px0 , i = 1, . . . ,N, particles.

Iterate for k = 1, 2, . . . , t:
1. Measurement update:

w̄
(i)
k|k = w

(i)
k|k−1p(yk |x (i)

k ).

2. Normalize: w
(i)
k|k := w̄

(i)
k|k/

∑
j w̄

(j)
k|k .

3. Resampling: Bayesian bootstrap: Take N samples with replacement from the set
{x (i)

k }
N
i=1 where the probability to take sample i is w

(i)
k|k Let w

(i)
k|k = 1/N.

4. Prediction: Generate random process noise samples

v
(i)
k ∼ pvk , x

(i)
k+1 = f (x

(i)
k , v

(i)
k ) wk+1|k = wk|k .

The number of needed particles, N, scales rather poorly with the state dimension.
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Marginalized Particle Filter

Objective

Decrease the number of particles for large state spaces (say nx > 3) by
utilizing partial linear Gaussian substructures.

The task of nonlinear �ltering can be split into two parts:

1. Representation of the �ltering probability density function.
2. Propagation of this density during the time and measurement

update stages.

Possible to mix a parametric distribution in some dimensions with
grid/particle represention in the other dimensions.

True Particle Mixed
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Model with Linear Gaussian Substructure

Conditional Linear Gaussian Model

xnk+1 = f nk (x
n
k ) + F n

k (x
n
k )x

l
k + Gn

k (x
n
k )w

n
k ,

x lk+1 = f lk (x
n
k ) + F l

k(x
n
k )x

l
k + G l

k(x
n
k )w

l
k ,

yk = hk(x
n
k ) + Hk(x

n
k )x

l
k + ek .

All of wn, w l , ek and xk0 are Gaussian. xn0 can be general.

Basic factorization holds: conditioned on xn1:k , the model is linear
and Gaussian.

This framework covers many navigation, tracking and SLAM
problem formulations! Typically, position is the nonlinear state, while
all other ones are (almost) linear where the (extended) KF is used.
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Example: 1D terrain navigation (1/2)

Terrain navigation in 1D. Unknown velocity
considered as a state:

xk+1 = xk + uk +
T 2
s
2
vk

uk+1 = uk + Tsvk

yk = h(xk) + ek .
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Example: 1D terrain navigation (2/2)

Conditional on trajectory x1:k , the velocity is given by a linear and
Gaussian model:

uk+1 = uk + Tsvk dynamics

xk+1 − xk = uk +
T 2
s
2
vk measurement.

Given the trajectory, and the Kalman �lter applies to this part.

The reminder of the model,

xk+1 = xk + ûk|k +
T 2
s
2
vk , Cov(ûk) = Pk|k

yk = h(xk) + ek ,

is nonlinear due to the measurement in the map. This can be
handled using a particle �lter to generate di�erent trajectories for
which to run the Kalman �lters.

The Kalman �lters and the particle �lter interact to obtain the full
�lter solution.
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Key Factorization

Split the state vector into two parts (�linear� and �nonlinear�)

xk =

(
xnk
x lk

)
.

The key idea in the MPF is the factorization

p(x lk , x
n
1:k |y1:k) = p(x lk |xn1:k , y1:k)p(xn1:k |y1:k).

The KF provides the �rst factor, and the PF the second one (requires
marginalization as an implicit step)!
A method to derive the marginalized particle �lter will now be outlined,
in which the MPF can be interpreted as an stochastic �lter bank.
Algorithm details can be found in the textbook.
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Conditional Gaussian Linear Part: Kalman �lter

Assume the trajectory of the nonlinear part, xn1:k given, then
p(x lk |xn1:k , y1:k) is the solution to the estimation problem give by

x lk+1 = F l
k(x

n
k )x

l
k + f lk (x

n
k ) + G l

k(x
n
k )w

l
k , (KF-TU)

yk = Hk(x
n
k )x

l
k + hk(x

n
k ) + ek (KF-MU1)

xnk+1 − f nk (x
n
k ) = F n

k (x
n
k )x

l
k + Gn

k (x
n
k )w

n
k . (KF-MU2)

The solution to (KF-TU) and (KF-MU1) is a Kalman �lter.

(KF-MU2) adds no value until conditioning on xnk+1, when it
becomes a measurement equation where the statistics depends on
how xnk+1 was obtained.

A separate Kalman �lter is needed for each xn1:k sequence, but
sometimes computations can be reused.
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Remaining Part: particle �lter

The remaining factor p(xn1:k |y1:k) matches what have not been resolved
used in

xnk+1 = f nk (x
n
k ) + F n

k (x
n
k )x

l
k + Gn

k (x
n
k )w

n
k (PF-TU)

x lk+1 = f lk (x
n
k ) + F l

k(x
n
k )x

l
k + G l

k(x
n
k )w

l
k ,

yk = hk(x
n
k ) + Hk(x

n
k )x

l
k + ek . (PF-MU)

The estimation problem can be solved using a particle �lter.

The time update utilizes (PF-TU) and the distribution of x lk from
the KF to generate new particles.

The measurement update use (PF-MU) and the distribution of x lk to
update the weights of the particles.

This can be interpreted as stochastic trajectory generation and pruning in
a stochastic �lter bank. Compare this to the generation and reduction of
discrete and enumerable mode sequences in normal �lter banks.
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Marginalized Particle Filter Properties

Bene�ts of the marginalized particle �lter compared to regular particle
�lters:

Requires fewer particles.

Improves the variance, given the same number of particles.

Has lower risk of divergence.

Requires less tuning of importance density and resampling.

The price to paid is that the algorithm is more complex.
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Summary

The marginalized particle �lter (MPF) apply to problems with linear
Gaussian substructure.

Combines Kalman �lters and a particle �lter.

Requires fewer particles than a regular PF.

Higher accuracy than PF with the same number of particles.

Improves robustness compared to PF.

Is more complex to implement.

The MPF can be viewed as a �lter bank with stochastic branching and
pruning.

Section 9.8
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