

Sensor Networks Tricks
 Sensor Fusion

Fredrik Gustafsson
fredrik.gustafsson@liu.se

Gustaf Hendeby
gustaf.hendeby@liu.se

Linköping University

Sensor Networks

Summary of nonlinear models of the form $y_{k}=h(x)+e_{k}$ in sensor networks

$$
\begin{aligned}
\text { TOA } r_{k} & =\left\|x-p_{k}\right\|+e_{k} \\
\text { TDOA } r_{k} & =\left\|x-p_{k}\right\|+r_{0}+e_{k} \\
\text { DOA } \varphi_{k} & =\arctan 2\left(x_{2}-p_{k, 2}, x_{1}-p_{k, 1}\right)+e_{k} \\
\operatorname{RSS} \quad y_{k} & =P_{0}-\beta \log \left(\left\|x-p_{k}\right\|\right)
\end{aligned}
$$

Nonlinear estimation theory from Chapter 3 gives a whole toolbox of solutions.
However, for this particular application, there is a number of dedicated solutions and tricks:

- Interpreting TDOA as hyperbolic functions.
- Special tricks for TOA
- Triangulation of DOA
- RSS simultaneous localization and propagation parameter estimation

TDOA Geometry

TOA corresponds to circles that intersect at the transmitter，but what is TDOA？ Common offset r_{0}（due to unsynchronized clocks）

$$
r_{k}=\left\|x-p_{k}\right\|+r_{0}, \quad k=1,2, \ldots, N
$$

Estimation approach：

Consider r_{0} as a parameter（cf．GPS）．
Common in literature：
Study range differences

$$
r_{i, j}=r_{i}-r_{j}, \quad 1 \leq i<j \leq N .
$$

Gives nice geometric interpretation．

Assume $p_{1}=(D / 2,0)^{T}$ and $p_{2}=(-D / 2,0)^{T}$, respectively, then

$$
\begin{aligned}
r_{1} & =\sqrt{x_{2}^{2}+\left(x_{1}-D / 2\right)^{2}} \\
r_{2} & =\sqrt{x_{2}^{2}+\left(x_{1}+D / 2\right)^{2}} \\
r_{12} & =r_{2}-r_{1}=h(x, D) \\
& =\sqrt{x_{2}^{2}+\left(x_{1}+D / 2\right)^{2}}-\sqrt{x_{2}^{2}+\left(x_{1}-D / 2\right)^{2}} .
\end{aligned}
$$

Simplify

$$
\frac{x_{1}^{2}}{a}-\frac{x_{2}^{2}}{b}=\frac{x_{1}^{2}}{r_{12}^{2} / 4}-\frac{x_{2}^{2}}{D^{2} / 4-r_{12}^{2} / 4}=1
$$

This is the definition of a hyperbolic function!

- Illustration of three different values of r_{12}.
- Corresponds to three different hyperbolic functions.
- Measurement noise on r_{12} gives confidence bands that becomes thicker with distance.

Gustafsson and Hendeby

Direction of Arrival (DOA)

The solution to this hyperbolic equation has asymptotes along the lines

$$
x_{2}= \pm \frac{b}{a} x_{1}= \pm \sqrt{\frac{D^{2} / 4-r_{12}^{2} / 4}{r_{12}^{2} / 4}} x_{1}= \pm x_{1} \sqrt{\left(\frac{D}{r_{12}}\right)^{2}-1} .
$$

AOA, φ, for far-away transmitters

$$
\varphi= \pm \arctan \left(\sqrt{\left(\frac{D}{r_{12}}\right)^{2}-1}\right)
$$

Thus, if the transmitter is far away from the network, each TDOA pair can be seen as a DOA and triangulation can be applied.

DOA Triangulation

Angle observations from sensor at position p_{k}

$$
\begin{aligned}
\varphi_{k} & =\arctan \left(\frac{x_{2}-p_{k, 2}}{x_{1}-p_{k, 1}}\right) \\
\left(x_{1}-p_{k, 1}\right) \tan \left(\varphi_{k}\right) & =x_{2}-p_{k, 2}
\end{aligned}
$$

Linear model follows immediately,

$$
\begin{aligned}
& \mathbf{y}=\mathbf{H} x+\mathbf{e} \\
& \mathbf{y}=\left(\begin{array}{c}
p_{1,1} \tan \left(\varphi_{1}\right)-p_{1,2} \\
p_{2,1} \tan \left(\varphi_{2}\right)-p_{2,2} \\
\vdots \\
p_{N, 1} \tan \left(\varphi_{N}\right)-p_{N, 2}
\end{array}\right), \quad \mathbf{H}=\left(\begin{array}{cc}
\tan \left(\varphi_{1}\right) & -1 \\
\tan \left(\varphi_{2}\right) & -1 \\
\vdots & \\
\tan \left(\varphi_{N}\right) & -1
\end{array}\right) .
\end{aligned}
$$

Note:

What is the relation between the measurement noise on φ_{k} and \mathbf{e} here?

Dedicated Explicit LS Solutions

Basic trick: study NLS of squared distance measurements:

$$
\hat{x}=\underset{x}{\arg \min } \sum_{k=1}^{N}\left(r_{k}^{2}-\left\|x-p_{k}\right\|^{2}\right)^{2} .
$$

If the terms to be squared are expanded, it looks like quadratic terms $\|x\|^{2}$ would appear. However, there are a couple of tricks to get rid of these to get a quadratic cost function whose minimum has an analytical solution.

TOA range parameter trilateration: r_{k}^{2} is linear in $\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)^{T}$
TOA reference sensor trilateration: $r_{k}^{2}-r_{1}^{2}$ is linear in x

Note:

What is the relation between the measurement noise on r_{k} and the implicitly assumed additive noise on r_{k}^{2} ?

RSS
 $(1 / 2)$

Received signal strength (RSS) observations:
■ All waves (radio, radar, IR, seismic, acoustic, magnetic) decay exponentially in range.
■ Receiver k measures energy/power/signal strength for wave i :

$$
P_{k, i}=P_{0, i}\left\|x-p_{k}\right\|^{\beta_{i}} .
$$

■ Transmitted signal strength and path loss constant may be unknown.

- Communication constraints make coherent detection (that is, TOA and TDOA measurements) from the signal waveform impossible.
- Solution: Compare $P_{k, i}$ for different receivers.

Log model:

$$
\begin{aligned}
& \bar{P}_{k, i}=\bar{P}_{0, i}+\beta_{i} \underbrace{\log \left(\left\|x-p_{k}\right\| \mid\right)}_{=: c_{k}(x)} \\
& y_{k, i}=\bar{P}_{k, i}+e_{k, i}
\end{aligned}
$$

Use separable least squares to eliminate path loss constant and transmitted power for wave i :

$$
\begin{aligned}
\widehat{(x, \theta)} & =\underset{x, \theta}{\arg \min } V(x, \theta) \\
V(x, \theta) & =\sum_{i=1}^{M} \sum_{k=1}^{N} \frac{\left(y_{k, i}-h\left(c_{k}(x), \theta_{i}\right)\right)^{2}}{\sigma_{P, i}^{2}} \\
h\left(c_{k}(x), \theta_{i}\right) & =\theta_{i, 1}+\theta_{i, 2} c_{k}(x) \\
c_{k}(x) & =\log \left(\left\|x-p_{k}\right\|\right)
\end{aligned}
$$

Finally, use NLS to optimize over 2D target position x.

Summary

- The basic network measurements:

$$
\begin{aligned}
\text { TOA } r_{k} & =\left\|x-p_{k}\right\|+e_{k} \\
\text { TDOA } r_{k} & =\left\|x-p_{k}\right\|+r_{0}+e_{k} \\
\text { DOA } \varphi_{k} & =\arctan 2\left(x_{2}-p_{k, 2}, x_{1}-p_{k, 1}\right)+e_{k} \\
\text { RSS } y_{k} & =P_{0}-\beta \log \left(\left\|x-p_{k}\right\|\right)
\end{aligned}
$$

NLS or NLT general approaches to estimate x.

- Tricks (not statistically optimal!) described in this lecture:

TDOA pairwise differences correspond to hyperbolic functions
TOA range parameter trilateration: r_{k}^{2} is linear in $\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)^{T}$
TOA reference sensor trilateration: $r_{k}^{2}-r_{1}^{2}$ is linear in x
DOA triangulation approach: x is an affine function in $\tan \left(\varphi_{k}\right)$

Sections 4.3-4.6

