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The Kalman Filter

The Kalman �lter is the exact solution to the Bayesian �ltering recursion
for linear Gaussian model

xk+1 = Fkxk + Gkvk , vk ∼ N (0,Qk)

yk = Hkxk + ek , ek ∼ N (0,Rk).

Kalman Filter Algorithm

Time update: x̂k+1|k = Fk x̂k|k

Pk+1|k = FkPk|kF
T
k + GkQkG

T
k

Meas. update: x̂k|k = x̂k|k−1 + Kk(yk − ŷk)

Pk|k = Pk|k−1 − KkPk|k−1

ŷk = Hk x̂k|k−1 εk = yk − ŷk

Kk = Pk|k−1H
T
k S−1 Sk = HkPk|k−1H

T
k + Rk
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Extending to Nonlinear Models

Many phenomena in nature are not linear, especially measurements.

Hence, �lters to handle more general nonlinear models are needed.

Nonlinear model

Consider the nonlinear model:

xk+1 = f (xk , vk), Cov(vk) = Qk

yk = h(xk) + ek , Cov(ek) = Rk ,

assuming E(vk) = 0, E(ek) = 0, and mutual independence.

The extended Kalman �lter (EKF) approximates the model with a linear

one using a Taylor series expansion, before applying the regular Kalman

�lter.
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Classic Derivation of EKF (1/2)

For simplicity, assume the simpler nonlinear model:

xk+1 = f (xk) + vk

yk = h(xk) + ek

To derive the time update:

f (xk+1) ≈ f (x̂k|k) +∇x f (x̂k|k)︸ ︷︷ ︸
Fk

(xk − x̂k|k)

The approximate linear model becomes:

xk+1 = f (x̂k|k)− Fk x̂k|k︸ ︷︷ ︸
Known input

+Fkxk + vk .

The �lter update follows as:

x̂k+1|k = Fk x̂k|k + f (x̂k|k)− Fk x̂k|k = f (x̂k|k)

Pk+1|k = FkPk|kF
T
k + Qk .
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Classic Derivation of EKF (2/2)

To derive the measurement update:

h(xk) ≈ h(x̂k|k−1) +∇x h(x̂k|k−1)︸ ︷︷ ︸
Hk

(xk − x̂k|k−1)

The approximate linear model becomes

yk = h(x̂k|k−1)− Hk x̂k|k−1︸ ︷︷ ︸
Known input

+Hkxk + ek

The measurement update follows as

x̂k|k = x̂k|k−1 + Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1(yk − (Hk x̂k|k−1 + h(x̂k|k−1)− Hk x̂k|k−1)
)

= x̂k|k−1 + Kk

(
yk − h(x̂k|k−1)

)
Pk|k = (I − KkHk)Pk|k−1

= (I − KkHk)Pk|k−1(I − KkHk)
T + KkRkK

T
k (Joseph's form)
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EKF1 and EKF2

The classic extended Kalman �lter (EKF) is derived as above using

only the �rst order terms in the Taylor series expansion, i.e., the

TT1 NLT previously discussed.

A TT2 EKF (EKF2) can be obtained similarly, by including the

quadratic terms in the Taylor series expansion , i.e., the TT2 NLT

previously discussed.

EKF2 hence compensates for quadratic e�ects in the model, which

results in an additional term in both the mean and covariance

expressions.
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EKF1

and EKF2

Algorithm

Time update: x̂k+1|k = f (x̂k|k , 0)

+ 1
2

[
tr(f ′′i,xPk|k )

]
i

Pk+1|k = f ′x (x̂k|k )Pk|k (f
′
x (x̂k|k ))

T + f ′v (x̂k|k )Qk (f
′
v (x̂k|k ))

T

+ 1
2

[
tr(f ′′i,x (x̂k|k )Pk|k f

′′
j,x (x̂k|k )Pk|k )

]
ij

Meas. update: x̂k|k = x̂k|k−1 + Kk

(
yk − h(x̂k|k−1, 0)

− 1
2

[
tr(h′′i,xPk|k−1)

]
i

)
Pk|k = Pk|k−1 − Pk|k−1(h

′
x (x̂k|k−1))

TS−1k h′x (x̂k|k−1)Pk|k−1

+ 1
2

[
tr(h′′i,x (x̂k|k−1)Pk|k−1h

′′
j,x (x̂k|k−1)Pk|k−1)

]
ij

Sk = h′x (x̂k|k−1)Pk|k−1(h
′
x (x̂k|k−1))

T + h′e(x̂k|k−1)Rk (h
′
e(x̂k|k−1))

T

+ 1
2

[
tr(h′′i,x (x̂k|k−1)Pk|k−1h

′′
j,x (x̂k|k−1)Pk|k−1)

]
ij

Kk = Pk|k−1(h
′
x (x̂k|k−1))

TS−1k

NB!

This form of the EKF2 (as given in the book) is disregarding second order terms of the
process noise! See, e.g., my thesis for the full expressions.
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EKF1 and EKF2 Algorithm

Time update: x̂k+1|k = f (x̂k|k , 0) + 1
2

[
tr(f ′′i,xPk|k )

]
i

Pk+1|k = f ′x (x̂k|k )Pk|k (f
′
x (x̂k|k ))

T + f ′v (x̂k|k )Qk (f
′
v (x̂k|k ))

T

+ 1
2

[
tr(f ′′i,x (x̂k|k )Pk|k f

′′
j,x (x̂k|k )Pk|k )

]
ij

Meas. update: x̂k|k = x̂k|k−1 + Kk

(
yk − h(x̂k|k−1, 0) − 1

2

[
tr(h′′i,xPk|k−1)

]
i

)
Pk|k = Pk|k−1 − Pk|k−1(h

′
x (x̂k|k−1))

TS−1k h′x (x̂k|k−1)Pk|k−1

+ 1
2

[
tr(h′′i,x (x̂k|k−1)Pk|k−1h

′′
j,x (x̂k|k−1)Pk|k−1)

]
ij

Sk = h′x (x̂k|k−1)Pk|k−1(h
′
x (x̂k|k−1))

T + h′e(x̂k|k−1)Rk (h
′
e(x̂k|k−1))

T

+ 1
2

[
tr(h′′i,x (x̂k|k−1)Pk|k−1h

′′
j,x (x̂k|k−1)Pk|k−1)

]
ij

Kk = Pk|k−1(h
′
x (x̂k|k−1))

TS−1k

NB!

This form of the EKF2 (as given in the book) is disregarding second order terms of the
process noise! See, e.g., my thesis for the full expressions.
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Comments

The EKF1, using the TT1 transformation, is obtained by letting

both Hessians f ′′x and h′′x be zero.

Analytic Jacobian and Hessian needed. If not available, use

numerical approximations (done in Signal and Systems Lab by

default!)

The complexity of EKF1 is as in KF n3x due to the FPFT operation.

The complexity of EKF2 is n5x due to the FiPF
T
j operation for

i , j = 1, . . . , nx .

Dithering is good! That is, increase Q and R from the simulated

values to account for the approximation errors.
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Simulation Example (1/2)

Create a constant velocity model, simulate and Kalman �lter.

� �
T = 0.5;

F = [1 0 T 0; 0 1 0 T; 0 0 1 0; 0 0 0 1];

G = [T^2/2 0; 0 T^2/2; T 0; 0 T];

H = [1 0 0 0; 0 1 0 0];

R = 0.03* eye(2);

m = lss(F, [], H,[], G*G', R, 1/T);

m.xlabel = {'X', 'Y', 'vX', 'vY'};

m.ylabel = {'X', 'Y'};

m.name = 'Constant velocity motion model ';

z = simulate(m, 20);

m = nl(m); % EKF only exist for nl models

xhat1 = ekf(m, z, 'k', 0); % Time -varying

xplot2(z, xhat1 , 'conf', 90, [1 2]);� �
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Simulation Example (2/2)

Covariance illustrated as con�dence ellipsoids in 2D plots or con�dence bands in 1D plots.

� �
xplot(z, xhat1 , 'conf', 99)� �
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Summary

The extended Kalman �lter (EKF) is an extension of the Kalman

�lter to handle nonlinear models.

The �lter can be derived by �rst linearizing the model and then

applying the normal Kalman �lter.

The EKF can also be derived in the more general NLT framework,

similar to the UKF, using TT1 or TT2.

The EKF loses all optimality properties of the Kalman �lter, but

does in practice often work very well.

Chapter 8 (EKF related parts)
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