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SLAM Problem Summary
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Simultaneous localization and mapping (SLAM) is the problem of
�nding ones position, xk , in a map, m, while the map is built. Both
parts must be considered simultaneous.

Model:

zk =

(
xk+1

mk+1

)
=

(
f (xk , vk)

mk

)
, Cov(vk) = Q

y i
k = h(xk ,m

c ik
k ) + e ik , Cov(e ik) = R, i = 1, . . . , Ik .

Solve using essentially a marginalized particle �lter yields the
FastSLAM1.0/FastSLAM2.0 algorithm.
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Idea: factorize the posterior as in the MPF

Basic factorization idea:

p(x1:k ,m|y1:k) = p(m|x1:k , y1:k)p(x1:k |y1:k).

The �rst factor corresponds to a classical mapping problem, and is
solved by the (E)KF.

The second factor is approximated by the PF.

Leads to a marginalized PF (MPF) where each particle is a pose
trajectory with an attached map corresponding to mean and
covariance of each landmark, but no cross-correlations.
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More General Measurement Model

Assume observation model linear(-ized) in landmark position

0 = h0(y ik , xk) + h1(y ik , xk)m
c ik
k + e ik , Cov(e ik) = R i

k .

The special case y ik = h(xk ,m
c ik
k ) + e ik yields

h0(y ik , xk) = h(xk , m̂
c ik
k )− h′

m
(xk , m̂

c ik
k )m̂

c ik
k − y ik

h1(y ik , xk) = h′
m

(xk , m̂
c ik
k ).

This formulation covers:

First order Taylor expansions.

Bearing and range measurements, where hi (ynk , xk) has two rows per
landmark in 2D SLAM.

Bearing-only measurements coming from a camera detection.
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Estimating the Mapping: WLS

Linear estimation theory applies. The WLS estimate:

m̂j =

(∑N

k=1

(
h1(y

c̄ jk
k , xk)

)T
(R

c̄ jk
k )−1h1(y

c̄ jk
k , xk)︸ ︷︷ ︸

I jN

)−1
∑N

k=1
−
(
h1(y

c̄ jk
k , xk)

)T
(R

c̄ jk
k )−1h0(y

c̄ jk
k , xk)︸ ︷︷ ︸

ıjN

= (I jN)−1ıjN ,

where i = c̄ jk is the inverse mapping from landmark j to measurement i .
In this sum, the terms where the map landmark j does not get an
associated observation landmark at time k are dropped.

Under a Gaussian noise assumption, the posterior distribution is Gaussian(
mj |y1:N , x1:N

)
∼ N

(
(I jN)−1ıjN , (I jN)−1

)
.
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Mapping Solution: information �lter

Recursive estimation of the map using information �lter form

ıjk = ıjk−1 +
(
h1(y

c̄ jk
k , xk)

)T
R−1k h0(y

c̄ jk
k , xk),

I jk = I jk−1 +
(
h1(y

c̄ jk
k , xk)

)T
R−1k h1(y

c̄ jk
k , xk),

m̂j = (I jk)−1ıjk .
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Pose Solution: particle �lter

Given x1:k and y1:k , m is obtainable with WLS, then likelihood in the
Gaussian case becomes:

p(y
c̄ jk
k |y1:k−1, x1:k)

= N
(
h0(y

c̄ jk
k , xk)+h1(y

c̄ jk
k , xk)m̂j

k−1,R
c̄ jk
k +h1(y

c̄ jk
k , xk)(I jk)−1

(
h1(y

c̄ jk
k , xk)

)T)
.

This can be used as measurement equation in the measurement update

in a particle �lter.

The proposal distribution in the time update can be the SIR or the
optimal:

FastSLAM 1.0: x
(i)
k+1 ∼ p(xk+1|x

(j)
k )

FastSLAM 2.0: x
(i)
k+1 ∼ p(xk+1|x

(i)
1:k , y1:k+1) ∝ p(xk+1|x

(j)
k )p(yk+1|xk+1)
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FastSLAM Algorithm (1/2)

1. Initialize the particles

x
(n)
1 ∼ p0(x),

where N denotes the number of particles.
2. Data association that assigns a map landmark c ik to each observed

landmark i . Initialize new map landmarks if necessary.
3. Pose measurement update

ω
(n)
k ∝

∏
i

N
(
h0(y i

k , xk)+h1(y i
k , xk)m̂

c ik
k−1

,R i
k +h1(y i

k , xk)(Ic
i
k

k )−1
(
h1(y i

k , xk)
)T)

.

where the product is taken over all observed landmarks i , and normalize

such that
∑

n ω
(n)
k = 1.

4. Resampe Draw a new set of particles with replacement based on the
particle weights.
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FastSLAM Algorithm (2/2)

5. Map measurement update:

p(m(n)|x (n)
1:k , y1:k) = N

(
(I(n)

k )−1ı
(n)
k , (I(n)

k )−1
)
,

ıjk = ıjk−1 +
(
h1(y

c̄ jk
k , x

(n)
k )
)T

R−1k h0(y
c jk
k , x

(n)
k ),

I jk = I jk−1 +
(
h1(y

c̄ jk
k , x

(n)
k )
)T

R−1k h1(y
c̄ jk
k , x

(n)
k ).

6. Pose time update:

FastSLAM 1.0 (SIR PF)

x
(n)
k+1 ∼ p(xk+1|x

(n)
1:k ).

FastSLAM 2.0 (SIS PF with optimal proposal)

x
(n)
k+1 ∼ p(xk+1|x

(n)
1:k , y1:k+1)

∝ p(xk+1|x
(n)
1:k )p(yk+1|xk+1, x

(n)
1:k , y1:k).
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Properties

FastSLAM is ideal for a ground robot with three states and vision sensors
providing thousands of landmarks.

FastSLAM scales linearly in landmark dimension.

As the standard PF, FastSLAM scales badly in the state dimension.

FastSLAM is relatively robust to incorrect associations, since
associations are local for each particle and not global as in
EKF-SLAM.

Loop closure can be problematic due to particle depletion.
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FastSLAM Illustration

Airborne simultanous localization and mapping (SLAM) using a
UAV with camera producing image features.

Research collaboration with IDA.
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Summary
The simultaneous localization and mapping
(SLAM) problem has been solved using a
marginalized particle �lter:

FastSLAM 1.0.

FastSLAM 2.0.

Properties:

Scales well with the number of landmarks,
but poorly with state dimension.

Landmark not extremely associations
critical.

Loop closure is nontrivial.

Section 11.3
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