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SLAM Problem Summary

m Simultaneous localization and mapping (SLAM) is the problem of
finding ones position, xi, in a map, m, while the map is built. Both
parts must be considered simultaneous.

m Model:

(X (ks vi) _
%= (mk+1> B ( my ) ’ Cov{w) = Q
yi=h(x.mi)+el,  Cov(ef) =R, i=1... k.

m Solve using essentially a marginalized particle filter yields the
FastSLAM 1.0/FastSLAM 2.0 algorithm.

2/12



Idea: factorize the posterior as in the MPF

Basic factorization idea:
P(x1:k; My1k) = p(mxtk, yik) P(Xek]y:k)-
m The first factor corresponds to a classical mapping problem, and is
solved by the (E)KF.

m The second factor is approximated by the PF.

m Leads to a marginalized PF (MPF) where each particle is a pose
trajectory with an attached map corresponding to mean and
covariance of each landmark, but no cross-correlations.
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More General Measurement Model

Assume observation model linear(-ized) in landmark position
0 = h®(yi, x) + h* (i, xk)m* + e, Cov(eg) = Ri.

The special case y] = h(xx, miL) + e} yields

. i i i .
hO(yis k) = h(xi, %) — Bty (x, M )mE — v

1 . N Ci
h (yll(vxk) = h:n(X/ﬂ mkk)'
This formulation covers:
m First order Taylor expansions.

m Bearing and range measurements, where h'(y/, xi) has two rows per
landmark in 2D SLAM.

m Bearing-only measurements coming from a camera detection.
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Estimating the Mapping: WLS
Linear estimation theory applies. The WLS estimate:

y By = 1
W = (0, (0 )T/ O 50

k=1

Ty
N a T,.8\_ g i1 ]
Zk:l _(hl(ykkaxk)) (Rkk) 1h0(ykk,xk) = (IJN) 1ZJN7

J
N

where | = E{( is the inverse mapping from landmark j to measurement /.
In this sum, the terms where the map landmark j does not get an
associated observation landmark at time k are dropped.

Under a Gaussian noise assumption, the posterior distribution is Gaussian

(9 lysv xin) ~ N () Moh (T3) 7).
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Mapping Solution: information filter

Recursive estimation of the map using information filter form

i i g T _ )
zjk = zjk_l + (hl(ykk,xk)) R, 1h0(yk",xk),
i i g T g
L =T 4 "‘(hl(ykk’xk)) Ry lhl(ykk7xk)7
- Ny
W = (7)) 7,.
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Pose Solution: particle filter

Given x1.4 and yjy.,, m is obtainable with WLS, then likelihood in the
Gaussian case becomes:

&
p(y, " [y1k—1, X1:)

e d o c e P ] T
= N (P X+ (s xys RE+hA (v ) ()7 (R o) ).
This can be used as measurement equation in the measurement update
in a particle filter.

The proposal distribution in the time update can be the SIR or the
optimal:
FastSLAM 1.0: XIE'J)FI ~ p(xk+1|x,(<1))

FastSLAM 2.0: x\) ) ~ p(xiralx), yikr) o p(xist X9 p(yie xis1)
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FastSLAM Algorithm (1/2)

1. Initialize the particles
X" ~ po(x),

where N denotes the number of particles.

2. Data association that assigns a map landmark ¢; to each observed
landmark /. Initialize new map landmarks if necessary.

3. Pose measurement update

. . N i . . i _ . T
wi” o HN(hO(YLXk)+h1()//<,xk)mik,17 Ric+h* (vie, xi)(ZE) ™ (M (vi, x«) )
i

where the product is taken over all observed landmarks i, and normalize
such that >, w,((") =1

4. Resampe Draw a new set of particles with replacement based on the
particle weights.
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FastSLAM Algorithm (2/2)

5. Map measurement update:
P(m(n)|X1(;nk)a)/1:k) _ N((Iin))flls(n), (Is(n))fl),
i i d My T p— c n
%= then + (B0 ) TR ),
j ' d T o d
T} = Ty + (0 g ™) TR (v <),
6. Pose time update:
FastSLAM 1.0 (SIR PF)
x4~ p(xicalx).
FastSLAM 2.0 (SIS PF with optimal proposal)

X;S’Jr)l ~ P(Xk+1‘x1(;nk)7)/1:k+1)

X P(Xk+1‘X1(;nk))P(Yk+1|Xk+1aX1(;nk)»}’1:k)'
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Properties

FastSLAM is ideal for a ground robot with three states and vision sensors
providing thousands of landmarks.

m FastSLAM scales linearly in landmark dimension.
m As the standard PF, FastSLAM scales badly in the state dimension.

m FastSLAM is relatively robust to incorrect associations, since

associations are local for each particle and not global as in
EKF-SLAM.

m Loop closure can be problematic due to particle depletion.
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FastSLAM lllustration

m Airborne simultanous localization and mapping (SLAM) using a
UAV with camera producing image features.

m Research collaboration with IDA.

http://youtu.be/hA_NZeuoy9Y
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Summary

The simultaneous localization and mapping
(SLAM) problem has been solved using a
marginalized particle filter:

m FastSLAM 1.0.
m FastSLAM 2.0.
Properties:

m Scales well with the number of landmarks,
but poorly with state dimension.

m Landmark not extremely associations
critical.

m Loop closure is nontrivial.

Section 11.3
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