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Localization in Sensor Networks

Nonlinear estimation applies to a wide range of problems in signal processing, model

estimation and sensor fusion.

Localization in radio networks is an important application

Only a few nonlinear models appear in practice

They all enable very concrete formulas for gradients, algorithms and performance

bounds
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Sensor Models in Sensor Networks

Radio Propagation Model

Received signal yk(t) is a noisy, delayed and attenuated version of the transmitted signal

s(t)

yk(t) = aks(t − τk) + ek(t), k = 1, 2, . . . ,N.

How the delay τ is estimated using known training signal (pilot symbols) is explained in

other courses (Signal Processing, Signal Theory, Communication Theory).

What is important is that the delay can be related to the range between the transmitter

and receiver

rk = τkv = ‖x − pk‖2 =
√

(x1 − pk,1)2 + (x2 − pk,2)2,

where v is the speed of the medium (light for radio, sound for acoustic and water for sonar

signals).
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Sensor Models in Sensor Networks

Di�erent use cases:

Time-of-arrival (TOA) � transport delay, transmission time is known to receiver.

Then the arrival time is proportional to range τk = 1
v ‖x − pk‖2

Time-di�erence-of-arrival (TDOA) � arrival time known at each receiver

(synchronized), but the transmission time not. Then the arrival time is proportional to

range plus a bias τk = 1
v ‖x − pk‖2 + r0

v

Multiple closely separated receivers can convert their TDOA measurements to an angle.

This is called Direction-of-arrival (DOA) ϕk . For two receivers, ϕk = arccos(τ2 − τ1).
Estimation of ak in the signal model gives received signal strength (RSS), which does

not require any timing or known training signal, just transmitter power P0 and path

propagation constant α. Then,

Pk = P0 − α log(‖x − pk‖).
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Basic Network Sensor Models

The basic network measurements in any network (radio, acoustic, sonar, seismic) can be

summarized as follows:

Sensor Network Models

TOA hk(x) = rk = ‖x − pk‖
TDOA hk(x) = rk = ‖x − pk‖+ r0

DOA hk(x) = ϕk = arctan2
(
x2 − pk,2, x1 − pk,1

)
RSS hk(x) = P0 − α log

(
‖x − pk‖

)
Note:

All models are on the form yk = hk(x) + ek .
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THE Example (1/5)

TOA corresponds to circles that intersect at the transmitter, but what is TDOA?

It will be shown in another lecture that each pair of TDOA measurements can be

interpreted as a hyperbolic function, and all possible pairs give a set of hyperbolas that

intersect at the transmitter position.
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Note:

TDOA hyperbolas intersect with poor geometry far away from the network!
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Estimation Criteria

General problem formulation and solution:

x̂ = argmin
x

V (x).

Summary from Chapter 3:

Loss functions

NLS: VNLS(x) = ‖y − h(x)‖2 =
(
y − h(x)

)T (
y − h(x)

)
NWLS: VNWLS(x) =

(
y − h(x)

)T
R−1(x)

(
y − h(x)

)
ML: VML(x) = log pe

(
y − h(x)

)
GML: V GML(x) =

(
y − h(x)

)T
R−1(x)

(
y − h(x)

)
+ log detR(x)

We have here allowed the covariance R(x) to depend on the parameters in the NWLS and

Gaussian ML.
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THE Example (2/5)

Level curves VNLS(x) for TOA and TDOA.
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Level curves con�rm that TDOA has a poor geometry outside the network. TOA, on the

other hand, gives an elliptically shaped loss function close to the true position.
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Estimation Methods

General principles:

Steepest descent (Stochastic gradient)

x̂k = x̂k−1 + µkH
T (x̂k−1)R

−1(y − h(x̂k−1))

Gauss-Newton

x̂k = x̂k−1 + µk
(
HT (x̂k−1)R

−1H(x̂k−1)
)−1

HT (x̂k−1)R
−1
(
y − h(x̂k−1)

)
Problem speci�c quantities:

Method h(x,pi ) ∂h/∂x1 ∂h/∂x2

RSS P0 + 10β log10 ri
10β
log 10

x1−pi,1
r2i

10β
log 10

x2−pi,2
r2i

TOA ri
x1−pi,1

ri

x2−pi,2
ri

TDOA ri − rj
x1−pi,1

Di
− x1−pj,1

Dj

x2−pi,2
Di
− x2−pj,2

Dj

AOA αi + arctan
x2−pi,2
x1−pi,1

−(x1−pi,1)

r2i

x2−pi,2
r2i
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THE Example (3/5)

The steepest descent and Gauss-Newton algorithms for TOA.
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Both algorithms approache the optimum nicely. The step length is deliberately chosen very

small, so it takes 100 and 45, respectively, iterations to reach the optimum.
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THE Example (4/5)

The steepest descent and Gauss-Newton algorithms for TDOA.
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The stochastic gradient algorithm is particularly ine�ective in the end, where it needs

hundreds of iteration to climb a shallow ridge.
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CRLB Estimation Bound

The Cramér-Rao Lower Bound (CRLB) provides a lower bound on the covariance of any

unbiased estimator

CRLB Estimation Bound

Cov
(
x̂
)
≥ I−1

(
x0
)
,

where E
(
x̂
)
= x0 (unbiased estimator) and I(x) is the Fisher Information Matrix (FIM)

The FIM is de�ned from the likelihood as

Ik(x) = E

[(
d log p(yk |x)

dx

)(
d log p(yk |x)

dx

)T
]
.

which is additive so I(x) =
∑

k Ik(x).
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CRLB Localization Bound

If x is the position (in 1D, 2D, 3D or generally nD), then the Mean Square Error (MSE)

can be written

E
(
(x − x̂)T (x − x̂)

)
= tr E

(
(x − x̂)(x − x̂)T

)
= tr(Cov(x̂)) = P11 + P22 + · · ·+ Pdd .

Then we get the following MSE bound

CRLB Localization Bound

MSE ≥ tr
(
I−1

(
x0
))
,

where E
(
x̂
)
= x0 (unbiased estimator) and I(x) is the Fisher Information Matrix (FIM)

Note:

This can be used to get a lower bound on the position standard deviation (RMSE) from any

network con�guration.
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THE Example (5/5)

CRLB for TOA and TDOA:
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Note:

Inside the convex hull of the network, the lower bound is very similar

Outside the convex hull, TDOA performance degrades quickly!
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Summary

Signal model for localization in sensor networks

y = h(x − p) + e, Cov(e) = R

x is the unknown position, p is the (known in this chapter) sensor locations.

The basic network measurements:

TOA rk = ‖x − pk‖+ ek
TDOA rk = ‖x − pk‖+ r0 + ek
DOA ϕk = arctan2(x2 − pk,2, x1 − pk,1) + ek
RSS yk = P0 − β log(‖x − pk‖)

NLS approaches for estimating x .
CRLB theorem implies a lower bound on any unbiased estimator of position x̂ ,

MSE = tr
(
Cov(x̂)

)
� tr

(
I−1(x0)

)
,

Sections 4�4.2
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