

Kinematic Models

Sensor Fusion

Fredrik Gustafsson fredrik.gustafsson@liu.se Gustaf Hendeby gustaf.hendeby@liu.se

Linköping University

Description of rotational kinematics for sensor fusion applications.

- Rotational kinematics is theoretically a challenging subject.
- Goal to describe the key mathematical background.
- But with a sensor fusion perspective.
- Embed the rotational with translation kinematics to get a complete 3D navigation framework.

= nar

Summary of Model Discretization

Linear time-invariant (LTI) state-space model:

Continuous time	Discrete time	
$\dot{x} = Ax + Bu$	$x_{k+1} = Fx_k + Gu_k$	
y = Cx + Du	$y_k = Hx_k + Ju_k$	

u is either input or process noise (then J denotes cross-correlated noise!).

Zero-order hold (ZOH) sampling assuming the input is piecewise constant:

$$\begin{aligned} \kappa(t+T) &= e^{AT} \kappa(t) + \int_0^T e^{A\tau} Bu(t+T-\tau) \, d\tau \\ &= \underbrace{e^{AT}}_F \kappa(t) + \underbrace{\int_0^T e^{A\tau} \, d\tau}_G Bu(t). \end{aligned}$$

■ *First order hold* (FOH) sampling assuming the input is piecewise linear, is another option.

Rotational Kinematics in 3D

Much more complicated in 3D than 2D! Could be a course in itself. Coordinate notation for rotations of a body in local coordinate system (x, y, z) relative to

an earth fixed coordinate system:

Motion components	Rotation Euler angle	Angular speed
Longitudinal forward motion x	Roll ϕ	ω^{\star}
Lateral motion y	Pitch θ	ω^{y}
Vertical motion z	Yaw ψ	ω^z

Sac

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Euler Orientation in 3D

An earth fixed vector \mathbf{g} (for instance the gravitational force) is in the body system oriented as $Q\mathbf{g}$, where

$$\begin{split} Q &= Q_{\phi}^{\star} Q_{\theta}^{\psi} Q_{\psi}^{z} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \cos \theta \cos \psi & \cos \theta \sin \psi & -\sin \theta \\ \sin \phi \sin \theta \cos \psi - \cos \phi \sin \psi & \sin \phi \sin \theta \sin \psi + \cos \phi \cos \psi & \sin \phi \cos \theta \\ \cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi & \cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi & \cos \phi \cos \theta \end{pmatrix}. \end{split}$$

Note:

The result depends on the order of rotations $Q_{\phi}^{x}Q_{\theta}^{y}Q_{\psi}^{z}$. Here, the *xyz* rule is used, but there are other options.

Euler Rotation in 3D

When the body rotate with ω , the Euler angles change according to

$$egin{pmatrix} \omega_x \ \omega_y \ \omega_z \end{pmatrix} = egin{pmatrix} \dot{\phi} \ 0 \ 0 \end{pmatrix} + Q^x_\phi egin{pmatrix} 0 \ \dot{ heta} \ 0 \end{pmatrix} + Q^x_\phi Q^y_ heta egin{pmatrix} 0 \ \dot{ heta} \ \dot{ heta} \end{pmatrix} + Q^x_\phi Q^y_ heta egin{pmatrix} 0 \ 0 \ \dot{ heta} \end{pmatrix} .$$

The dynamic equation for Euler angles can be derived from this as

$$\begin{pmatrix} \dot{\phi} \\ \dot{\psi} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} 1 & \sin(\phi) \tan(\theta) & \cos(\phi) \tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) \sec(\theta) & \cos(\phi) \sec(\theta) \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} .$$

Singularities when $\theta = \pm \frac{\pi}{2}$, can cause numeric divergence!

San

《曰》 《聞》 《臣》 《臣》

Unit Quaternions

- Vector representation: $q = (q^0, q^1, q^2, q^3)^T$.
- Norm constraint of unit quaternion: $||q|| = q^T q = 1$.
- The quaternion can be interpreted as an axis angle:

$$q = \begin{pmatrix} \cos(rac{1}{2}lpha) \\ \sin(rac{1}{2}lpha)\hat{\mathbf{v}} \end{pmatrix},$$

where q represents a rotation with α around the axis defined by \hat{v} , $\|\hat{v}\| = 1$.

Pros and Cons

- + No singularity.
- + No 2π ambiguity.
- More complex and non-intuitive algebra.
- The norm must be maintained; this can be handled by projection or as a virtual measurement with small noise.

Quaternion Orientation in 3D

The orientation of the vector \mathbf{g} in body system is $Q\mathbf{g}$, where

$$Q = egin{pmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2q_1q_2 - 2q_0q_3 & 2q_0q_2 + 2q_1q_3 \ 2q_0q_3 + 2q_1q_2 & q_0^2 - q_1^2 + q_2^2 - q_3^2 & -2q_0q_1 + 2q_2q_3 \ -2q_0q_2 + 2q_1q_3 & 2q_2q_3 + 2q_0q_1 & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{pmatrix} \ = egin{pmatrix} 2q_2q_3 + 2q_0q_1 & q_0^2 - q_1^2 - q_2^2 + q_3^2 \ 2q_1q_2 + 2q_0q_3 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \ 2q_1q_2 + 2q_0q_3 & 2q_0^2 + 2q_2^2 - 1 & 2q_2q_3 - 2q_0q_1 \ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & 2q_0^2 + 2q_3^2 - 1 \end{pmatrix}.$$

Sar

イロト イポト イヨト イヨト

Quaternion Rotation in 3D

Rotation with ω gives a dynamic equation for q which can be written in two equivalent forms:

$$\dot{q}=rac{1}{2}S(\omega)q=rac{1}{2}ar{S}(q)\omega,$$

where

$$S(\omega) = egin{pmatrix} 0 & -\omega_x & -\omega_y & -\omega_z \ \omega_x & 0 & \omega_z & -\omega_y \ \omega_y & -\omega_z & 0 & \omega_x \ \omega_z & \omega_y & -\omega_x & 0 \end{pmatrix}, \qquad egin{pmatrix} ar{S}(q) = egin{pmatrix} -q_1 & -q_2 & -q_3 \ q_0 & -q_3 & q_2 \ q_3 & q_0 & -q_1 \ -q_2 & q_1 & q_0 \end{pmatrix}$$

9/14

•

Sampled Form of Quaternion Dynamics

The ZOH sampling formula

$$q(t+T)=e^{rac{1}{2}Sig(\omega(t)ig)T}q(t)$$

T

actually has a closed form solution

$$q(t+T) = \left(\cos(rac{T}{2}\|\omega(t)\|)I_4 + rac{T}{2}\overbrace{rac{\sin(rac{T}{2}\|\omega(t)\|)}{rac{T}{2}\|\omega(t)\|}}^{\operatorname{sin}(rac{T}{2}\|\omega(t)\|)}S(\omega(t))
ight)q(t) \ pprox \left(I_4 + rac{T}{2}S(\omega(t))
ight)q(t).$$

The approximation coincides with Euler forward sampling approximation, and has to be used in more complex models where, e.g., ω is part of the state vector.

Sac

- ロト - (四下 - 王下 - 王下 - -

Double Integrated Quaternion

$$egin{pmatrix} \dot{q}(t)\ \dot{\omega}(t) \end{pmatrix} = egin{pmatrix} rac{1}{2}S(\omega(t))q(t)\ w(t) \end{pmatrix}.$$

There is no known closed form discretized model. However, the approximate form can be discretized using the chain rule to

$$\begin{pmatrix} q(t+T)\\ \omega(t+T) \end{pmatrix} \approx \underbrace{\begin{pmatrix} I_4 \frac{T}{2} S(\omega(t)) & \frac{T}{2} \overline{S}(q(t)) \\ 0_{3\times 4} & I_3 \end{pmatrix}}_{F(t)} \begin{pmatrix} q(t)\\ \omega(t) \end{pmatrix} + \underbrace{\begin{pmatrix} \frac{T^3}{4} S(\omega(t)) I_4 \\ TI_3 \end{pmatrix}}_{G(t)} v(t).$$

Rigid Body Kinematics

A "multi-purpose" model for all kind of navigation problems in 3D (22 states)

Bias states for the accelerometer and gyroscope have been added as well.

590

Sensor Model for Kinematic Model

Inertial sensors (gyroscope, accelerometer, magnetometer) are used as sensors.

 $y_t^{\text{acc}} = R(q_t)(a_t - \mathbf{g}) + b_t^{\text{acc}} + e_t^{\text{acc}}, \qquad e_t^{\text{acc}} \sim \mathcal{N}(0, R_t^{\text{acc}}),$ $y_t^{\text{mag}} = R(q_t)\mathbf{m} + b_t^{\text{mag}} + e_t^{\text{mag}}, \qquad e_t^{\text{mag}} \sim \mathcal{N}(0, R_t^{\text{mag}}),$ $y_t^{\text{gyro}} = \omega_t + b_t^{\text{gyro}} + e_t^{\text{gyro}}, \qquad e_t^{\text{gyro}} \sim \mathcal{N}(0, R_t^{\text{gyro}}).$

Bias observable, but special calibration routines are recommended:

Stand-still detection: When $||y_t^{acc}|| \approx \mathbf{g}$ and/or $||y_t^{gyro}|| \approx 0$, the gyro and acc bias is readily read off. Can decrease drift in dead-reckoning from cubic to linear.

Ellipse fitting: When "waving the sensor" over short time intervals, the gyro can be integrated to give accurate orientation, and acc and magnetometer measurements can be transformed to a sphere from an ellipse.

◆ロト ◆掃 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ① ● ● ●

Summary

- Dynamics for 3D orientation expressed in quaternion q is the most used form in navigation applications $\dot{q} = \frac{1}{2}S(\omega)q = \frac{1}{2}\bar{S}(q)\omega$.
- Discretized approximate model

$$q(t+T) \approx \left(I_4 + \frac{T}{2}S(\omega(t))\right)q(t).$$

- Quaternion can be part of a larger model with more states:
 - 1. Rotational rates ω .
 - 2. Translational states (p, v, a).
 - 3. Sensor bias states b.
- Measurements from accelerometers, gyroscopes and magnetometers can then be used as inputs and outputs in a Kalman filter.

Section 13.2 - 13.3

Gustafsson and Hendeby

イロト 不振 トイヨト イヨト ヨー シック