

## Kinematic Models

Sensor Fusion

Fredrik Gustafsson<br>fredrik.gustafsson@liu.se

Gustaf Hendeby<br>gustaf.hendeby@liu.se

Linköping University

## Purpose

Description of rotational kinematics for sensor fusion applications.

- Rotational kinematics is theoretically a challenging subject.
- Goal to describe the key mathematical background.
- But with a sensor fusion perspective.
- Embed the rotational with translation kinematics to get a complete 3D navigation framework.


## Summary of Model Discretization

Linear time-invariant (LTI) state-space model:
Continuous time

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

Discrete time

$$
\begin{aligned}
x_{k+1} & =F x_{k}+G u_{k} \\
y_{k} & =H x_{k}+J u_{k}
\end{aligned}
$$

$u$ is either input or process noise (then $J$ denotes cross-correlated noise!).

- Zero-order hold ( ZOH ) sampling assuming the input is piecewise constant:

$$
\begin{aligned}
x(t+T) & =e^{A T} x(t)+\int_{0}^{T} e^{A \tau} B u(t+T-\tau) d \tau \\
& =\underbrace{e^{A T}}_{F} x(t)+\underbrace{\int_{0}^{T} e^{A \tau} d \tau}_{G} B u(t)
\end{aligned}
$$

- First order hold ( FOH ) sampling assuming the input is piecewise linear, is another option.


## Rotational Kinematics in 3D

Much more complicated in 3D than 2D! Could be a course in itself.
Coordinate notation for rotations of a body in local coordinate system $(x, y, z)$ relative to an earth fixed coordinate system:

| Motion components | Rotation Euler angle | Angular speed |
| :---: | :---: | :---: |
| Longitudinal forward motion $x$ | Roll $\phi$ | $\omega^{x}$ |
| Lateral motion $y$ | Pitch $\theta$ | $\omega^{y}$ |
| Vertical motion $z$ | Yaw $\psi$ | $\omega^{z}$ |

## Euler Orientation in 3D

An earth fixed vector $g$ (for instance the gravitational force) is in the body system oriented as $Q \mathbf{g}$, where

$$
\begin{aligned}
Q & =Q_{\phi}^{x} Q_{\theta}^{y} Q_{\psi}^{z} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \theta \cos \psi & \cos \theta \sin \psi & -\sin \theta \\
\sin \phi \sin \theta \cos \psi-\cos \phi \sin \psi & \sin \phi \sin \theta \sin \psi+\cos \phi \cos \psi & \sin \phi \cos \theta \\
\cos \phi \sin \theta \cos \psi+\sin \phi \sin \psi & \cos \phi \sin \theta \sin \psi-\sin \phi \cos \psi & \cos \phi \cos \theta
\end{array}\right) .
\end{aligned}
$$

## Note:

The result depends on the order of rotations $Q_{\phi}^{x} Q_{\theta}^{y} Q_{\psi}^{z}$. Here, the xyz rule is used, but there are other options.

## Euler Rotation in 3D

When the body rotate with $\omega$, the Euler angles change according to

$$
\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)=\left(\begin{array}{c}
\dot{\phi} \\
0 \\
0
\end{array}\right)+Q_{\phi}^{x}\left(\begin{array}{l}
0 \\
\dot{\theta} \\
0
\end{array}\right)+Q_{\phi}^{x} Q_{\theta}^{y}\left(\begin{array}{c}
0 \\
0 \\
\dot{\psi}
\end{array}\right) .
$$

The dynamic equation for Euler angles can be derived from this as

$$
\left(\begin{array}{c}
\dot{\phi} \\
\dot{\psi} \\
\dot{\theta}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \sin (\phi) \tan (\theta) & \cos (\phi) \tan (\theta) \\
0 & \cos (\phi) & -\sin (\phi) \\
0 & \sin (\phi) \sec (\theta) & \cos (\phi) \sec (\theta)
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) .
$$

Singularities when $\theta= \pm \frac{\pi}{2}$, can cause numeric divergence!

## Unit Quaternions

- Vector representation: $q=\left(q^{0}, q^{1}, q^{2}, q^{3}\right)^{T}$.
- Norm constraint of unit quaternion: $\|q\|=q^{T} q=1$.
- The quaternion can be interpreted as an axis angle:

$$
q=\binom{\cos \left(\frac{1}{2} \alpha\right)}{\sin \left(\frac{1}{2} \alpha\right) \hat{v}}
$$

where $q$ represents a rotation with $\alpha$ around the axis defined by $\hat{v},\|\hat{v}\|=1$.

## Pros and Cons

+ No singularity.
+ No $2 \pi$ ambiguity.
- More complex and non-intuitive algebra.
- The norm must be maintained; this can be handled by projection or as a virtual measurement with small noise.


## Quaternion Orientation in 3D

The orientation of the vector $\mathbf{g}$ in body system is $Q \mathbf{g}$, where

$$
\begin{array}{r}
Q=\left(\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2 q_{1} q_{2}-2 q_{0} q_{3} & 2 q_{0} q_{2}+2 q_{1} q_{3} \\
2 q_{0} q_{3}+2 q_{1} q_{2} & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & -2 q_{0} q_{1}+2 q_{2} q_{3} \\
-2 q_{0} q_{2}+2 q_{1} q_{3} & 2 q_{2} q_{3}+2 q_{0} q_{1} & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right) \\
=\left(\begin{array}{ccc}
2 q_{0}^{2}+2 q_{1}^{2}-1 & 2 q_{1} q_{2}-2 q_{0} q_{3} & 2 q_{1} q_{3}+2 q_{0} q_{2} \\
2 q_{1} q_{2}+2 q_{0} q_{3} & 2 q_{0}^{2}+2 q_{2}^{2}-1 & 2 q_{2} q_{3}-2 q_{0} q_{1} \\
2 q_{1} q_{3}-2 q_{0} q_{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} & 2 q_{0}^{2}+2 q_{3}^{2}-1
\end{array}\right) .
\end{array}
$$

## Quaternion Rotation in 3D

Rotation with $\omega$ gives a dynamic equation for $q$ which can be written in two equivalent forms:

$$
\dot{q}=\frac{1}{2} S(\omega) q=\frac{1}{2} \bar{S}(q) \omega,
$$

where

$$
S(\omega)=\left(\begin{array}{cccc}
0 & -\omega_{x} & -\omega_{y} & -\omega_{z} \\
\omega_{x} & 0 & \omega_{z} & -\omega_{y} \\
\omega_{y} & -\omega_{z} & 0 & \omega_{x} \\
\omega_{z} & \omega_{y} & -\omega_{x} & 0
\end{array}\right), \quad \bar{S}(q)=\left(\begin{array}{ccc}
-q_{1} & -q_{2} & -q_{3} \\
q_{0} & -q_{3} & q_{2} \\
q_{3} & q_{0} & -q_{1} \\
-q_{2} & q_{1} & q_{0}
\end{array}\right) .
$$

## Sampled Form of Quaternion Dynamics

The ZOH sampling formula

$$
q(t+T)=e^{\frac{1}{2} s(\omega(t)) T} q(t)
$$

actually has a closed form solution

$$
\begin{aligned}
q(t+T) & =(\cos \left(\frac{T}{2}\|\omega(t)\|\right) I_{4}+\frac{T}{2} \frac{\overbrace{\sin \left(\frac{T}{2}\|\omega(t)\|\right)}^{\frac{T}{2}\|\omega(t)\|}}{} \\
& \approx(\omega(t))) q(t) \\
& \left(I_{4}+\frac{T}{2} S(\omega(t))\right) q(t) .
\end{aligned}
$$

The approximation coincides with Euler forward sampling approximation, and has to be used in more complex models where, e.g., $\omega$ is part of the state vector.

## Double Integrated Quaternion

$$
\binom{\dot{q}(t)}{\dot{\omega}(t)}=\binom{\frac{1}{2} S(\omega(t)) q(t)}{w(t)} .
$$

There is no known closed form discretized model. However, the approximate form can be discretized using the chain rule to

$$
\begin{aligned}
\binom{q(t+T)}{\omega(t+T)} \approx & \underbrace{\left(\begin{array}{cc}
I_{4} \frac{T}{2} S(\omega(t)) & \frac{T}{2} \bar{S}(q(t)) \\
0_{3 \times 4} & I_{3}
\end{array}\right)}_{F(t)}\binom{q(t)}{\omega(t)} \\
& +\underbrace{\binom{\frac{T^{3}}{4} S(\omega(t)) I_{4}}{T I_{3}}}_{G(t)} v(t) .
\end{aligned}
$$

## Rigid Body Kinematics

A "multi-purpose" model for all kind of navigation problems in 3D (22 states)

$$
\left(\begin{array}{c}
\dot{p} \\
\dot{v} \\
\dot{a} \\
\dot{q} \\
\dot{\omega} \\
\dot{b^{\text {acc }}} \\
\dot{b}^{\text {gyro }}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & l & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} S(\omega) & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
p \\
v \\
a \\
q \\
\omega \\
b^{\text {acc }} \\
b^{\text {gyro }}
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v^{a} \\
v^{\omega} \\
v^{\text {acc }} \\
v^{\text {gyro }}
\end{array}\right) .
$$

Bias states for the accelerometer and gyroscope have been added as well.

## Sensor Model for Kinematic Model

Inertial sensors (gyroscope, accelerometer, magnetometer) are used as sensors.

$$
\begin{aligned}
& y_{t}^{\text {acc }}=R\left(q_{t}\right)\left(a_{t}-\mathbf{g}\right)+b_{t}^{\text {acc }}+e_{t}^{\text {acc }}, \\
& e_{t}^{\text {acc }} \sim \mathcal{N}\left(0, R_{t}^{\text {acc }}\right), \\
& y_{t}^{\text {mag }}=R\left(q_{t}\right) \mathbf{m}+b_{t}^{\text {mag }}+e_{t}^{\text {mag }} \text {, } \\
& e_{t}^{\mathrm{mag}} \sim \mathcal{N}\left(0, R_{t}^{\mathrm{mag}}\right), \\
& y_{t}^{\text {gyro }}=\omega_{t}+b_{t}^{\text {gyro }}+e_{t}^{\text {gyro }}, \quad e_{t}^{\text {gyro }} \sim \mathcal{N}\left(0, R_{t}^{\text {gyro }}\right) .
\end{aligned}
$$

Bias observable, but special calibration routines are recommended:
Stand-still detection: When $\left\|y_{t}^{\text {acc }}\right\| \approx \mathbf{g}$ and/or $\left\|y_{t}^{\text {gyro }}\right\| \approx 0$, the gyro and acc bias is readily read off. Can decrease drift in dead-reckoning from cubic to linear.
Ellipse fitting: When "waving the sensor" over short time intervals, the gyro can be integrated to give accurate orientation, and acc and magnetometer measurements can be transformed to a sphere from an ellipse.

## Summary

- Dynamics for 3D orientation expressed in quaternion $q$ is the most used form in navigation applications $\dot{q}=\frac{1}{2} S(\omega) q=\frac{1}{2} \bar{S}(q) \omega$.
- Discretized approximate model

$$
q(t+T) \approx\left(I_{4}+\frac{T}{2} S(\omega(t))\right) q(t) .
$$

- Quaternion can be part of a larger model with more states:

1. Rotational rates $\omega$.
2. Translational states $(p, v, a)$.
3. Sensor bias states $b$.

- Measurements from accelerometers, gyroscopes and magnetometers can then be used as inputs and outputs in a Kalman filter.


## Section 13.2 - 13.3

