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Models for Filtering

Object tracking illustration:

1. The model must be able to predict where the object turns

up at the next time. For instance, the speed and heading

may be part of the state vector.

2. In the time update of the �lter, the current estimated

position (blue circle) is translated to a new position (green

ellipse) according to the estimated velocity, taking small

possible manoeuvres into account (as process noise)

3. At the new position, a new sensor observation becomes

available (orange circle).

4. The �lter incorporates the sensor fusion formula

automatically to combine the prediction with the

measurement to a new position (blue ellipse).
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Purpose

Provide examples of common motion models and modelling methodology

Physics give continuous time model, �lters require (linear or nonlinear) discrete time

model.

Separate lecture on how to convert a continuous time model to discrete time

(discretization) that can be used in a �lter.

When modeling phenomena i nature, physical relations usually result in a time

continuous dynamic model with time discrete measurements.

This lecture, focus on continuous time state space model of the form ẋ = Ax + Bu for

linear systems and ẋ = a(x , u) for nonlinear systems.

Examples of basic models for navigation (sensors on the moving platform) and tracking

(sensors in the infrastructure).
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Example 1: Newton's II law

Linear motion governed by Newtons II law,

F = ma = mẌ .
To get a state space model, introduce the state vector x

x =

(
x1
x2

)
=

(
p
v

)
⇒ ẋ =

(
v
a

)
=

(
x2
F
m

)
⇒

ẋ =

(
0 1

0 0

)
x +

(
0 1

m

)T
u = Ax + Bu

Measurement:

yt =
(
1 0

)
x + et
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Example 2: Pendulum

The ordinary di�erential equation (ODE) for a pendulum is

`θ̈ +
b

2m
θ̇ + g sin θ = 0

where b is the damping.

To get a state space model, let

x =

(
θ
ω

)
⇒ ẋ =

(
ω

−g
` sin θ −

b
2m`ω

)
.

Using a �rst order Taylor expansion, the linearized model around

θ = 0 is obtained

ẋ =

(
0 1

−g
`

−b
2m

)
x .

Gustafsson and Hendeby Models 5 / 10



Navigation Models

Sensors are placed on the platform

Usually inertial measurements (accelerometers, gyroscopes), magnetometers (compass)

and speedometers.

2D orientation (course, or yaw rate) much easier than 3D orientation, which is covered

in a separate lecture.

Rotation in 2D is modeled by the course ψ, the simplest model being

ψ̇(t) = w(t),

where w(t) is the input (usually unknown and modelled as noise)
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Coordinated Turns in 2D Body Coordinates

A coordinated turn model aims at modelling straight as well as circular trajectories. The

most basic motion equations for course rate ψ̇, longitudinal speed vx , lateral speed vy and

radius R of the circle (or its inverse R−1 which becomes zero for straight lines!)

ψ̇ =
vx
R

= vxR
−1,

ay =
v2x
R

= v2xR
−1 = vx ψ̇,

ax = v̇x − vy
vx
R

= v̇x − vyvxR
−1 = v̇x − vy ψ̇.

Neglecting lateral speed (no skidding) x = (vx , ψ)
T and u = (ax , ψ̇) (longitudinal

accelerometer and course gyroscope), we can use the state space model

ẋ = Ax + Bu = 0 · x +

(
ax
ψ̇

)
and then compute R−1 = ψ̇/vx or as ay/v

2
x .
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Odometry 2D Body Coordinates

A more common model for 2D navigation is based on odometry, where the input

u = (vx , ψ̇)
T consists of speed and course rate, and the state is x = (X ,Y , ψ)T

Ẋ = v x cos(ψ)

Ẏ = v x sin(ψ)

ψ̇t = 0

This ODE has an explicit solution

Xt = X0 +

∫ t

0

v xτ cos(ψτ ) dτ

Yt = Y0 +

∫ t

0

v xτ sin(ψτ ) dτ

ψt = ψ0 +

∫ t

0

ψ̇τ dτ.
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Coordinated Turns in World Coordinates

Looking at a moving object from sensors in the infrastructure, every motion can be locally

approximated well with a circular path (where a straight motion is a special case).

Coordinated turn (CT) describes a circular motion.

Heading h can be seen as the same as course ψ before.

Note that the circle is described in world coordinates

here, not in a local coordinate system.
ẋ
ẏ

ḣ
v̇
ω̇

 =


v cos(h)
v sin(h)
ω
0

0
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Summary

Standard models in global coordinates:

• Translation p
(m)
t = wp

t .

• 2D orientation for heading h
(m)
t = wh

t .
• Coordinated turn model

Ẋ = vX Ẏ = vY

v̇X = −ωvY v̇Y = ωvX

ω̇ = 0.

Standard models in local coordinates (x , y , ψ):
• Odometry and dead reckoning for (x , y , ψ)

Xt = X0 +

∫ t

0

vx
τ cos(ψτ ) dτ Yt = Y0 +

∫ t

0

vx
τ sin(ψτ ) dτ

ψt = ψ0 +

∫ t

0

ψ̇τ dτ.

• Inertial models for (ψ̇, ay , ax , . . . ).

Chapter 13�13.1, 13.4
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