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Purpose

[llustrate the Kalman filter with some practical automotive applications
m Yaw estimation based on basic odometric model.

m Leaning angle estimation for motorcycles.
m Speed hump characterization.
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Virtual Yaw Rate Sensor

m Yaw rate gyroscope measures yaw rate ¢ directly, subject to bias by.
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m Wheel speeds provide two virtual measurements of speed and yaw rate, respectively
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We denote speed as an input for reasons explained later.

Uk

From the sensor relations, the state vector needs to include x, = (wk,¢k, b, ::—z)
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Odometric Model

The simplest form of odometric model is

Vi1 = i + T,
X1 = X + Tsv cos(vk),
Yit1 = Yk + Tsviesin(epy),

m The state needs to include position Xy, Y.

m We can consider the virtual sensor of speed v, to be an input or as a measurement if
vk is included in the state vector. This is a bit ambiguous. Generally, a smaller state
vector is to prefer, so speed is chosen to be an input.

m However, since we have two measurements of yaw rate, these have to be
measurements. We cannot have two inputs of the same thing in the KF.
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State Space Model

With the state vector x = (X, Y, 1,1, b,6)T, where § = r3/r4, we get the state space
model

Xk+1 = Xk + Tsu cos(vk),

_ Vi = Uk + by + ef,
Yit1 = Yi + Tsuksin(g),

. » 2_0_¢ _W3rnom+w4rnom2%26k_1+ez
Vi1 = Vi + Tk + wy, Yk =9 = Yk 2 B0, +1 ko
bk+1 = by + Wll()a W3mom + Warhom u
5 ug = +Wk
5k+1 =5k+Wk. 2

m Note the importance of adding process noise to allow the state to move in the time
update.

m The measurement noise of the speed becomes process noise, since it is considered as
an input.
m Note how the virtual measurement of yaw rate is included in the model!
o & = = =
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Observability

It is always important to check the model before the Kalman filter is applied. Is it
invertible?
m Linearize around a working point and compute the observability matrix.
m In this case, one can motivate that the two bias states by, 0, are observable if and only
if the car changes yaw rate.
m Why? by is constant, but the influence of § is multiplied with w3 /w4, so this ratio
needs to change to separate them from eachother.
m Formal analysis gives the same result.
m And it works in practice!
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Result

m Test in Valla-rondellen

m Red curve: odometric model just
supported with speed and gyroscope, not
the virtual yaw rate gyro.

m Blue curve: odometric model supported
with speed, gyroscope and virtual yaw
rate gyro.

m Gyro bias by ~ 0.8 rad/s, ~ 5 deg/s.
After 100 seconds, the integrated error
in yaw angle will be 500 degrees.

http://youtu.be/d9rzCCIBS9I
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m Headlight steering, ABS and
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m Combination of accelerometers
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http://youtu.be/hT6S1FgHxOc0
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MC Model

m State vector:

x=(p & ¢ b ¥ 0a 0a 05)

dy
y=h(x)=|a;

m State dynamics: triple integrator for ¢, double integrator for 1) and sensor bias states
m Sensor model: Mechanical relations give the three sensor models

uxq — z,x3 + z,x3 tan(x1) + g sin(x1) + xe
®
m /nput: Speed u = v,.

—uxgtan(xy) — z;(x3 + x3 tan?(x1)) + g cos(x1) + x7

—a1x3 + agxf tan(x1) — uxaJ + xe
m Parameters: z,,2,,a1,a»,J a

motorcycle.
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MC Results
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Speed bump estimation

m Goal: estimate the profile of a speed bump only based
on the wheel speed measurements.

m A dynamical model is used for how the wheel speed
depends on the road profile.

m A Kalman smoother eliminates an unavoidable vertical
drift by using the assumption that the absolute height
before and after the bump is equal.

m The ground truth of the vertical position of the car is
computed based on the markers on the car and the
video stream, while the road profile is measured with a
ruler.

m Result of a MSc thesis by Lage Ragnarsson 2017 at
NIRA Dynamics
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Speed bump estimation

Wheel Speed Road Profile

¥ s

m Red, blue and yellow line in
video follows markers on the
car using computer vision
detectors.

Angular velocity [rad/s]
Elevation [m]
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m Upper left plot: blue line shows ’ ' ' e 1
variation in wheel rotational '
speed.

m Upper right plot: red is ground
truth, blue is the Kalman filter
and subsequently smoother.
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https://youtu.be/lt6YKUEEZiw


https://youtu.be/lt6YKUffZiw

Speed bump estimation

Wheel Speed

Road Profile

m Red, blue and yellow line in
video follows markers on the
car using computer vision
detectors.

m Upper left plot: blue line shows
variation in wheel rotational
speed.

truth, blue is the Kalman filter
and subsequently smoother.
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https://youtu.be/lt6YKUffZiw

Summary

Automotive applications illustrating some important concepts:

Ground truth: The importance of having something to evaluate against.

m Observability: is the problem realistic with the given measurements?

m Virtual measurements: can be both constraints and indirect measurements.
|

Input or output ambiguity: In some applications, a measured quantity can be used
both as an input u or as an output y in the KF.

Smoothing: Do you get important information in the end? Then, a backward sweep
can improve the estimate drastically.

m Cost effective solutions: Expansive sensors can be replaced with cheap sensors in a KF
framework.

Statistical
Sensor Fusion

J#¥S  Section 16.2
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