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Purpose

Illustrate the Kalman �lter with some practical automotive applications.

Yaw estimation based on basic odometric model.

Leaning angle estimation for motorcycles.

Speed hump characterization.
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Virtual Yaw Rate Sensor

Yaw rate gyroscope measures yaw rate ψ̇ directly, subject to bias bk .

y1k = ψ̇k + bk + e1k

Wheel speeds provide two virtual measurements of speed and yaw rate, respectively

y2k =
ω3rnom + ω4rnom
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We denote speed as an input for reasons explained later.

From the sensor relations, the state vector needs to include xk =
(
ψk , ψ̇k , bk ,

rk,3
rk,4

)
.
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Odometric Model

The simplest form of odometric model is

ψk+1 = ψk + Ts ψ̇k ,

Xk+1 = Xk + Tsvk cos(ψk),

Yk+1 = Yk + Tsvk sin(ψk),

The state needs to include position Xk ,Yk .

We can consider the virtual sensor of speed vk to be an input or as a measurement if
vk is included in the state vector. This is a bit ambiguous. Generally, a smaller state
vector is to prefer, so speed is chosen to be an input.

However, since we have two measurements of yaw rate, these have to be
measurements. We cannot have two inputs of the same thing in the KF.
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State Space Model

With the state vector x = (X ,Y , ψ, ψ̇, b, δ)T , where δ = r3/r4, we get the state space
model

Xk+1 = Xk + Tsuk cos(ψk),

Yk+1 = Yk + Tsuk sin(ψk),

ψk+1 = ψk + Ts ψ̇k + wψ
k ,

bk+1 = bk + wb
k ,

δk+1 = δk + w δ
k .

y1k = ψ̇k + bk + e1k ,

y2k = 0 = ψ̇k −
ω3rnom + ω4rnom
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k .

Note the importance of adding process noise to allow the state to move in the time
update.

The measurement noise of the speed becomes process noise, since it is considered as
an input.

Note how the virtual measurement of yaw rate is included in the model!
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Observability

It is always important to check the model before the Kalman �lter is applied. Is it
invertible?

Linearize around a working point and compute the observability matrix.
In this case, one can motivate that the two bias states bk , δk are observable if and only

if the car changes yaw rate.
Why? bk is constant, but the in�uence of δ is multiplied with ω3/ω4, so this ratio
needs to change to separate them from eachother.
Formal analysis gives the same result.
And it works in practice!
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Result

Test in Valla-rondellen

Red curve: odometric model just
supported with speed and gyroscope, not
the virtual yaw rate gyro.

Blue curve: odometric model supported
with speed, gyroscope and virtual yaw
rate gyro.

Gyro bias bk ≈ 0.8 rad/s, ≈ 5 deg/s.
After 100 seconds, the integrated error
in yaw angle will be 500 degrees. h
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MC Leaning Angle

Headlight steering, ABS and
anti-spin systems require
leaning angle.

Gyro very expensive for this
application.

Combination of accelerometers
investigated, lateral and
downward acc worked �ne in
EKF.
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MC Model

State vector:

x =
(
ϕ ϕ̇ ϕ̈ ψ̇ ψ̈ δay δaz δϕ̇

)T
.

State dynamics: triple integrator for ϕ, double integrator for ψ and sensor bias states.

Sensor model: Mechanical relations give the three sensor models

y = h(x) =

ay
az
ϕ̇

 =

 ux4 − zyx3 + zyx
2
4 tan(x1) + g sin(x1) + x6

−ux4 tan(x1)− zz
(
x22 + x24 tan

2(x1)
)
+ g cos(x1) + x7

−a1x3 + a2x
2
4 tan(x1)− ux4J + x6


Input: Speed u = vx .

Parameters: zy , zz , a1, a2, J are constants relating to geometry and inertias of the
motorcycle.
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MC Results

Tests with reference sensor based on an
extra wheel on the rear axle that provides
the leaning angle with high accuracy.

Note the importance of having a ground

truth to compare to!

O�-line evaluation of di�erent subsets of
the sensors: all, all but gyro, only ay ,
only az .

Result: ay and az is a cost-e�cient
combination that meets the performance
requirement from the applications.
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Speed bump estimation

Goal: estimate the pro�le of a speed bump only based
on the wheel speed measurements.

A dynamical model is used for how the wheel speed
depends on the road pro�le.

A Kalman smoother eliminates an unavoidable vertical
drift by using the assumption that the absolute height
before and after the bump is equal.

The ground truth of the vertical position of the car is
computed based on the markers on the car and the
video stream, while the road pro�le is measured with a
ruler.

Result of a MSc thesis by Lage Ragnarsson 2017 at
NIRA Dynamics
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Speed bump estimation

Red, blue and yellow line in
video follows markers on the
car using computer vision
detectors.

Upper left plot: blue line shows
variation in wheel rotational
speed.

Upper right plot: red is ground
truth, blue is the Kalman �lter
and subsequently smoother.
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Summary

Automotive applications illustrating some important concepts:

Ground truth: The importance of having something to evaluate against.

Observability: is the problem realistic with the given measurements?

Virtual measurements: can be both constraints and indirect measurements.

Input or output ambiguity: In some applications, a measured quantity can be used
both as an input u or as an output y in the KF.

Smoothing: Do you get important information in the end? Then, a backward sweep
can improve the estimate drastically.

Cost e�ective solutions: Expansive sensors can be replaced with cheap sensors in a KF
framework.

Section 16.2
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